getpdf NLM PubMed Logo  

The Mastic Tree (Pistacia lentiscus L.) Leaves as Source of BACs: Effect of Growing Location, Phenological Stage and Extraction Solvent on Phenolic Content

Sanja Dragović1*orcid tiny, Verica Dragović-Uzelac2orcid tiny, Sandra Pedisić2orcid tiny, Zrinka Čošić2orcid tiny, Maja Friščić3orcid tiny, Ivona Elez Garofulić2orcid tiny and Zoran Zorić2orcid tiny

1IREKS AROMA Ltd., Trešnjevka 24, 10450 Jastrebarsko, Croatia

2Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

3Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia

Article history:

Received: 11 February 2020

Accepted: 15 July 2020

cc by

Key words:

mastic tree leaves, growing location, phenological stage, phenolic concentration, extraction solvent


Research backgroundMastic tree (Pistacia lentiscus L.) of the Anacardiaceae family is an evergreen shrub from Mediterranean countries where it is used in traditional medicine. Analysis of P. lentiscus leaf, stem, fruit and root extracts showed high concentrations of principal groups of secondary metabolites (flavonoids, phenolic acids and tannins), suggesting the plant possesses great biological potential. Therefore, the aim of this research is to evaluate the impact of environmental parameters and the extraction solvent type on the concentration of phenols in mastic tree leaf extracts grown at four different locations along the Adriatic coast (Barbariga, Lun, Hvar and Vela Luka) during three phenological stages (early flowering, early fruiting and late fruiting).

Experimental approachSince mastic tree plant has phenolic compounds with different structures and chemical properties, ethanolic and methanolic leaf extracts were analysed using high-performance liquid chromatography (HPLC) coupled with UV/Vis PDA detector. Phenolic compounds were identified by comparing the retention times and spectral data with those of standards at 280 and 340 nm.

Results and conclusionsIn all samples, phenolic acids and flavonol glycosides were quantified, while catechin was quantified only in methanolic extracts. The 5-O-galloylquinic acid was determined as a predominant phenolic compound in all samples followed by monogalloyl glucose, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid and gallic acid, respectively. Myricetin-3-O-rhamnoside was found to be the predominant flavonol glycoside followed by myricetin-3-O-glucoside, myricetin-3-O-glucuronide, quercetin-3-O-rhamnoside and derivative of flavonol glycoside. The mass concentration of these compounds significantly varied during different phenological stages, at different growing locations and used extraction solvents. The highest phenolic mass concentration was determined in the samples harvested at Hvar growing location and extracted in 80 % methanol. The highest total phenolic acid mass concentration was obtained in the samples harvested during the flowering phenological stage and the highest total flavonoid mass concentration in the samples harvested during the early fruiting stage.

Novelty and scientific contributionThe obtained data provide a better understanding of the P. lentiscus species phenolic concentration, which can lead to further investigations regarding the valorisation of mastic tree leaves as pharmaceutical products or as food products with added value.

*Corresponding author: +38516438605

Follow us

 facebook 1 twitter bird_icon LI In Bug


Environmental Policy

sdg publishers compact 4 300x300

QR Code


We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information