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SUMMARY  

Research background. Cactus pear (Opuntia ficus-indica) is an excellent source of 

polysaccharides and bioactive compounds with notable health benefits. The mucilage of the cactus 

pear, primarily composed of water and complex carbohydrates, exhibits properties similar to gums 

due to its unique physiological characteristics. Recently, plant-derived mucilage has gained significant 

attention in the dairy industry for its potential as a natural thickening and colloidal stabilizing agent. 

Experimental approach. This study investigates the application of freeze-dried cactus pear 

pulp from Opuntia ficus-indica L. Miller as a mucilage source and its interaction with a commercial 

stabilizer on the physical properties of low-fat cocoa ice cream (3.0 % fat). The research evaluates 

the impact of cactus pear pulp on the physicochemical properties and technological parameters of 

the ice cream. Ice cream samples containing 1.0 %, 1.5 %, and 2.0 % cactus pear pulp were 

compared with a control sample (0.0 % cactus pear pulp). 
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Results and conclusions. The findings reveal that cactus pear pulp is rich in fiber and phenolic 

compounds and exhibits significant technological potential due to its water absorption capacity 

(WAC), water solubility index (WSI), and oil absorption capacity (OAC). The incorporation of cactus 

pear pulp lowered the pH of the ice cream, enhanced its darkness and yellowness, increased the 

overrun, and delayed the melting process. These results suggest that cactus pear pulp works 

synergistically with the commercial stabilizer, highlighting its promise as a natural fat substitute and 

stabilizer for low-fat ice cream formulations. 

Novelty and scientific contribution. This study presents a pioneering exploration of the use of 

freeze-dried Opuntia ficus-indica pulp in ice cream production. The findings offer valuable insights for 

the ice cream industry, providing a natural alternative for stabilizers and fat substitutes. 

 

Keywords: freeze-dried cactus pear pulp; mucilage; low fat ice cream; physicochemical properties; 

technological parameters 

 

INTRODUCTION  

Opuntia ficus-indica (O. ficus-indica), a member of the Cactaceae family, is predominantly 

found in arid regions. The sustainable and mindful exploitation of this plant can significantly contribute 

to global goals aimed at reducing poverty and hunger, while fostering sustainability and innovation 

within the food industry. The primary substance produced by O. ficus-indica is mucilage, a compound 

mainly composed of water and polysaccharides. This mucilage plays a crucial role in the plant's 

adaptation mechanisms, helping to prevent dehydration or freezing through its cryostabilizing 

properties. The mucilage extracted from the cladodes of cactus pear is water-soluble and forms highly 

viscous colloidal solutions (1). 

Structurally, mucilage a complex polymeric polysaccharide, is primarily composed of highly 

branched carbohydrate structures. These structures consist of monomeric units such as L-arabinose, 

D-xylose, D-galactose, L-rhamnose, and galacturonic acid. In addition to these carbohydrates, 

mucilage may also contain glycoproteins and various bioactive components, including tannins, 

alkaloids, and steroids. Upon hydrolysis, mucilage generates a heterogeneous mixture of 

monosaccharides and is commonly classified as gum-like due to its comparable physicochemical 

properties (2). 

Vegetable mucilage has gained significant attention in dairy product development due to its 

effectiveness as a natural thickening and colloidal stabilizing agent (3).  

It has been extensively studied in yogurt production for its ability to improve texture and 

minimize whey separation during storage (4). Additionally, mucilage offers other benefits in products 
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like fermented milk and cheeses, including effective fat reduction (5–7), the potential to create 

prebiotic foods (5,6,8,9) and support for the development of probiotic products (6,8).  

Recent studies have explored the use of vegetable mucilage in ice cream to replace or reduce 

the reliance on commercial and costly additives. Mucilage serves as an effective cryoprotectant, 

compensating for the absence of various commercial stabilizers, while also providing desirable 

technological and sensory properties (10–13). Since it is challenging to achieve all desired properties 

in ice cream with a single stabilizer, combining two or three hydrocolloids in the mixture can produce 

synergistic effects. The quantity and type of stabilizer needed depend on factors such as the type and 

strength of the stabilizer, the levels of total solids and fat in the mixture, and other relevant factors 

(14). 

The literature reveals a scarcity of studies on the application of cactus pear mucilage as a fat 

substitute in low-fat ice creams. Therefore, this study aimed to evaluate the application of freeze-dried 

cactus pear pulp from Opuntia ficus-indica L. Miller as a mucilage source and its interaction with a 

commercial stabilizer on the physical characteristics of ice cream. Additionally, the study sought to 

characterize of freeze-dried cactus pear pulp by assessing its physicochemical properties and 

technological parameters. 

 

MATERIALS AND METHODS  

Raw material and obtaining freeze-dried cactus pear pulp  

The project is registered with the Ministry of the Environment, a Brazilian organization that 

includes the National System for Management of Genetic Heritage and Associated Traditional 

Knowledge (protocol number: AF2C488). The cactus (primary cladodes) were collected in the 

municipality of Couto de Magalhães de Minas, in the state of Minas Gerais, located at an altitude of 

740 meters and geographical coordinates of 18°04'16" South and 43°28'31" West, respectively. 

The primary cladodes of the cactus pears were first cleaned with potable water to remove 

surface dirt, sanitized in a 200 ppm sodium hypochlorite solution for 15 minutes, rinsed with potable 

water, and then frozen until use. 

Cactus pear pulp was prepared as illustrated in Fig. S1. After thawing the cladodes overnight, 

the peel was removed to extract the pulp, which was cut into approximately 1.5 cm×1.5 cm pieces. 

These pieces were divided into 100g portions and frozen for freeze-drying at the MULTIFAR/PRPPG 

Center using a Freeze Dryer (FreeZone, Labconco®, Kansas, MO, EUA) with the following 

parameters: temperature -50 °C and pressure 50 Pa. 

The freeze-dried cactus pear pulp was ground using a Wiley-type macro mill (TE-650, Tecnal, 

Piracicaba, Brazil) and then sieved with an 80-mesh sieve using a sieve shaker (Bertel, Bertel, 
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Caieiras, Brazil) to obtain a fine powder with a standard particle size of 180 μm. The ground and 

sieved cactus pear pulp was packaged in polypropylene bags and stored in a refrigerator until use. 

Fig. 1 

 

Characterization of freeze-dried cactus pear pulp 

Moisture content was determined using AOAC method 934.06 (15). Ash mass fraction was 

determined by burning the weighed mass of sample in a muffle furnace according to AOAC 923.03 

(16). Total dietary fiber (TDF), insoluble dietary fiber (IDF), and soluble dietary fiber (SDF) were 

analyzed using the AOAC method 991.43 (17). Protein content was determined with a CHNS/O 

elemental analyzer (TruSpec Micro, LECO, St. Joseph, MI, EUA). Lipid content was assessed using 

the Bligh and Dyer method (18). Total carbohydrate content was calculated as the difference between 

100 % and the sum of the percentages of lipids, proteins, and ash on a dry weight basis. 

The pH was measured using the electrometric method with a digital pH meter (MS Tecnopon 

mPA – 210, Piracicaba, Brazil) with a 1:10 sample dilution in distilled water (19). Water activity (aw) 

was assessed at 25 °C using a water activity instrument (4TE Duo, AquaLab, Pullman, WA, EUA). 

Macrominerals (Ca, Mg, K, and P) were analyzed with a atomic absorption spectrometer 

(SpectrAA 50B, Varian, Mulgrave, Australia) 

The fatty acid profile was determined in two stages: extraction and chromatographic 

determination. The lipid fraction was extracted from water-soluble extracts using a mixture of 

methanol (Sciavicco, Belo Horizonte Brazil), chloroform (Dinâmica, Química Contemporânea, 

Indaiatuba, Brazil) and water, according to the method described by Bligh and Dyer (18). 

Subsequently, derivatization was performed according to the method described by Hartman and Lago 

(20). The lipid fraction was added with 1 mL of 0.4 M methanolic potassium hydroxide (Êxodo 

Científica, Sumaré, Brazil) solution and kept in a water bath (SL-150, Solab, Piracicaba, Brazil) at 100 

°C for 10 minutes. The tubes were then cooled and 3 mL of 1 M methanolic sulfuric acid solution were 

added, followed by incubation at 100 °C for another 10 minutes. After cooling, 2 mL of hexane (Êxodo 

Científica, Sumaré, Brazil) were added, and the tubes were homogenized in a vortex (NA 3600, Norte 

Científica, Araraquara, Brazil) for 10 seconds. The upper layer containing the fatty acid methyl esters 

(FAMEs) dissolved in hexane was then collected for chromatographic analysis. The fatty acid profile 

was analyzed using Gas Chromatography with a Flame Ionization Detector (GC-FID) (7820A, Agilent 

Technologies, Santa Clara, CA, USA). A 1 µL sample was injected in split mode with a 40:1 ratio at 

an injector temperature of 240 °C. Hydrogen was used as the carrier gas at a constant pressure of 

15 psi. Fatty acid methyl esters (FAMEs) were separated on a DB-23 capillary column (60 m×0.25 

mm×0.25 µm; Agilent Technologies, Santa Clara, CA, USA) under a temperature program: an initial 
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hold at 50 °C for 1 minute, an increase to 175 °C at 25 °C/min, followed by a rise to 230 °C at 2 

°C/min, with a final isothermal hold for 6 minutes. The detector temperature was set at 240 °C. FAMEs 

were identified by comparing retention times with those of the FAME Mix 37 standard (P/N 47885; 

Sigma-Aldrich, St. Louis, MO, USA) (21). Results were expressed as the percentage of the total 

chromatogram area, incorporating FID correction factors and accounting for the conversion of esters 

to acids (22). 

Water absorption capacity (WAC) and water solubility index (WSI) were determined following 

the method described by Schmiele et al. (23). Oil absorption capacity (OAC) was measured using the 

methodology outlined by Benítez et al. (24). 

The color of the freeze-dried cactus pear pulp was evaluated using instrumental colorimetry 

according to the CIE Lab* system, with illuminant D65, a 10 ° viewing angle, and calibration in SCI 

mode (specular component included) using a spectrophotometer (CM-5, Konica Minolta, Chiyoda, 

Japan). The CIE parameters evaluated were: L* value (100=white; 0=black), a* (+, red; -, green), and 

b* (+, yellow; -, blue). 

The total phenolic compound (TPC) content was quantified using a modified version of the 

methodology described by Nascimento et al. (25), ensuring enhanced accuracy and reproducibility. 

Extraction was performed with a water:acetone (Isofar, Duque de Caxias, Brazil) (52:48) mixture over 

six cycles, with the supernatant adjusted to a final volume of 10 mL. The color reaction involved 100 

μL of the extracting solution containing phenolics, 250 μL of 0.2 M Folin-Ciocalteu reagent (Êxodo 

Científica, Sumaré, Brazil), 3 mL of distilled water, and 1 mL of 15 % Na2CO3 solution. The reaction 

was allowed to develop in the dark for 30 minutes. A standard curve was prepared using gallic acid. 

Absorbance was measured at 750 nm with a spectrophotometer (UV-M5, Bel Photonics, Monza, 

Italy). Readings were taken in six replicates, and results were expressed in milligrams of gallic acid 

equivalents per 100 grams of sample (dry basis). A blank containing the extraction solvent was used 

to zero the equipment. 

 

Raw materials and ingredients for ice cream preparation 

The raw materials and ingredients for the preparation of the ice creams were: water; skimmed 

milk powder, composed of 50 % carbohydrate, 34.5 % protein, and 0 % fat (Itambé®, Belo Horizonte, 

Brazil); 35 % fat cream (Itambé®, Belo Horizonte, Brazil); sucrose (Delta®, Delta, Brazil); inverted 

sugar (Ingredientes Online, São Paulo, Brazil); dextrose (Ingredientes Online, São Paulo, Brazil); 

stabilizer (Super Liga Neutra - Selecta®, Jaraguá do Sul, Brazil); emulsifier (Emustab, Selecta®, 

Jaraguá do Sul); freeze-dried cactus pear pulp; cocoa powder (Sicao®, Extrema, Brazil). 
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Ice Cream Formulation and Preparation 

The ice cream mixtures were prepared using a balanced syrup, resulting in a final fat content 

of 3.0 % (low-fat) relative to the total syrup volume, as detailed in Table 1. The concentration of freeze-

dried cactus pear pulp varied from 0.0 % (control) to 2.0 %. 

Table 1 

 

Ice cream preparation process 

The production of the ice cream began with the dissolution of the ingredients (Table 1) in water 

at 40 °C, with the exception of the cocoa powder. The mixture was blended and homogenized using 

an industrial blender (Model LQI-06, Vitalex, Catanduva, Brazil). It was then pasteurized at 70 °C for 

30 minutes, followed by cooling and maturation. After maturation, the cocoa powder was added and 

incorporated into the mixture using the same industrial blender. The flavored mixture was then 

churned and frozen in a batch freezer (V-5, FortFrio, Betim, Brazil). Finally, the ice cream was 

hardened in a freezer at -18°C. 

 

Physical properties of ice cream 

The air incorporation rate, or overrun (%), was determined using the following equation: 

Overrun=(
(𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑖𝑥−𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑐𝑒 𝑐𝑟𝑒𝑎𝑚)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑐𝑒 𝑐𝑟𝑒𝑎𝑚
) · 100           /1/ 

The meltdown rate and the first dripping time of the ice cream samples were measured using 

methods adapted from previous studies (11,26). For the melting rate determination, samples (30 g) 

were stored at -12 °C (service temperature) for 24 hours. Each sample was then placed in an 

incubation chamber at 25±1 °C, on a sieve with a mesh size of 1.25 cm, positioned over a pre-weighed 

beaker. The melted material passing through the sieve was collected and weighed at 5-minute 

intervals for approximately 30 minutes using an electronic digital balance (±0.01 g) (S2202H, Bel, 

Piracicaba, Brazil) to ensure precise measurements. The results were analyzed by plotting the melted 

ice cream mass against time. Linear equations were generated to determine the melting rate (27). 

The moment the first drop was observed was recorded as the initial dripping time (28). 

The color of the ice cream was evaluated using instrumental colorimetry based on the CIE 

Lab* system, with illuminant D65, a 10º viewing angle, and calibration in SCI mode (specular 

component included) on a spectrophotometer (CM-5, Konica Minolta, Chiyoda, Japan). Total color 

difference was determined according to the following equation: 

ΔE* = √𝛥𝑎2 +  𝛥𝑏2  +  𝛥𝐿2                                                                                               /2/                                                                      
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The experiment was conducted in triplicate for all samples. 

 

Statistical analysis 

The data were analyzed by Analysis of Variance followed by Tukey's test, at the 5 % 

significance level, using Sisvar 5.8 software (29). 

 

RESULTS AND DISCUSSION  

Characterization of freeze-dried cactus pears pulp 

Table 2 summarizes the approximate composition of freeze-dried cactus pear pulp. The 

freeze-dried cactus pear pulp exhibited a final moisture content lower than the maximum limit of 15 

% established by RDC Nº. 711, dated July 1, 2022 (30), for vegetable flours. This low moisture content 

ensures microbiological stability, making the freeze-dried cactus pear pulp suitable for conservation 

and storage. 

Table 2 

The water activity (aw) of the freeze-dried cactus pear pulp was 0.37, and the pH was 4.35. 

With an aw below 0.6 and the observed pH value, the freeze-dried cactus pear pulp is well-protected 

against the growth of deteriorating microorganisms (31). The low pH can be attributed to the presence 

of organic acids, including malic, citric, and oxalic acids (32). 

The moisture content and water activity (aw) of cactus pear mucilage vary among species, 

with differences influenced primarily by the variety and the harvesting season (dry vs. rainy). Higher 

moisture levels are associated with a shorter shelf life (33,34). 

Proteins are essential for the formation of foams and emulsions, functioning as surfactants at 

air-water (surface property) or oil-water (hydrodynamic property) interfaces. They create a highly 

viscoelastic film capable of withstanding mechanical stress and gravity (35). The protein content in 

the freeze-dried cactus pear pulp was measured at 8.17 %. This finding is consistent with 

Gebremariam et al. (34), who reported a protein content of approximately 8 % in dry matter of cactus 

pears (Opuntia ficus-indica). In contrast, Du Toit et al. (33) observed protein levels in powdered 

mucilage ranging from 3.28 % to 3.64 %, with no significant variations over a 6-month harvesting 

period. Similarly, Du Toit, De Wit, and Hugo (36) reported protein values of 2.7 % to 3.2 % in O. ficus-

indica. 

The lipid content of the freeze-dried cactus pear pulp was 1.46 %. Yadav et al. (37) suggest 

that the lipid content in gums plays a significant role in reducing surface tension, thereby enhancing 

the stability of oil-in-water emulsions. A similar lipid content of 1.19 % was reported by Dick et al. (38) 

for powdered mucilage of Opuntia monacantha. 
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The ash content observed in this study was 16.85 %, which is higher than the 15.14 % reported 

by Dick et al. (38) for powdered mucilage from Opuntia monacantha cladodes. However, it is lower 

than the ash content reported in previous studies for Opuntia ficus-indica cladodes, with Malainine et 

al. (39) documenting values as high as 19.6 %. 

The total phenolic content in the freeze-dried cactus pear pulp was 1242.16 mg GAE/100 g. 

Polyphenols are known to be the primary contributors to antioxidant activity. Numerous studies have 

focused on identifying natural antioxidants in cost-effective raw materials. For instance, apple 

pomace, with a phenolic content of 1016 mg GAE/100 g, is recognized as a significant source of 

natural polyphenols. Similarly, cactus pear cladodes can be considered a valuable and economical 

source of natural antioxidants (40). 

The freeze-dried cactus pear pulp exhibits a significant mineral content, particularly in 

potassium (4.94 % DM), calcium (3.15 % DM), and magnesium (0.93 % DM). These findings are 

consistent with the mineral profile commonly reported for the genus Opuntia ficus-indica, where 

potassium and calcium are typically found in higher concentrations, followed by magnesium (41). The 

mineral composition of Opuntia ficus-indica is noteworthy, as the calcium present in the mucilage is 

bioavailable and can be absorbed in the human gastrointestinal tract. This suggests that Opuntia 

mucilage could have new and significant applications in the food industry (42). 

The freeze-dried cactus pear pulp contained a total dietary fiber (TDF) content of 43.34 %, 

comprising 26.07 % insoluble fiber (IF) and 17.26 % soluble fiber (SF). This composition is consistent 

with findings from Opuntia ficus-indica f. amyloceae (spiny cladodes), which reported a TDF content 

of 51.24 % and a SF/IF ratio of 1:3 (40). The higher IF content compared to SF in freeze-dried cactus 

pear pulp aligns with these findings, reinforcing the typical fiber distribution in Opuntia species. 

The fatty acid profile of freeze-dried cactus pear pulp, presented in Table 3, revealed a 

predominant composition of polyunsaturated fatty acids (PUFA) at 54.01 %, with linoleic acid (18:2n-

6) being the most abundant. Among the saturated fatty acids (SFA), palmitic acid had the highest 

concentration, with a content of 26.89 %. Oleic acid (9.36 %) was the only monounsaturated fatty acid 

(MUFA) found. This profile is consistent with that of chia mucilage, which also contains nutritionally 

beneficial fatty acids, further highlighting the potential of freeze-dried cactus pear pulp as a valuable 

nutritional ingredient (13). 

Table 3 

The physical characteristics of the freeze-dried Opuntia ficus-indica L. Miller pulp are 

summarized in Table 4. 

The hydration properties of the freeze-dried Opuntia ficus-indica L. Miller pulp were 

characterized by a water solubility index (WSI) of 42.37 % and a water absorption capacity (WAC) of 
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5.60 g water/g DM, with an oil absorption capacity (OAC) of 2.93 g fat/g DM. This high fiber content 

is responsible for the considerable hydration properties observed. On the other hand, hydrophobic 

constituents, particularly the apolar radicals of proteinaceous amino acids, contribute to the oil 

absorption capacity. Additionally, dietary fibers can adsorb some oil on their surface, further 

influencing OAC values (42). 

The freeze-dried cactus pear pulp exhibited a high luminosity value (L*=79.86), a negative a* 

value (-7.11) indicating a green hue, and a positive b* value (27.09) suggesting a yellowish tint. This 

combination of values reflects a greenish-yellow color for the freeze-dried pulp, as detailed in Table 

4. The observed color may be attributed to the presence of natural pigments such as chlorophylls and 

carotenoids, or tannic substances from the cactus pear's tegument (43). 

Table 4  

 

Physical properties of ice cream 

Table 5 presents the average results for total solids, pH, overrun, and instrumental color 

parameters of the ice cream, along with the visual representation of the ice cream colors. The total 

solids content showed no significant difference (p>0.05) across the formulations, indicating that the 

incorporation of freeze-dried cactus pear pulp did not affect this parameter. The only variation among 

the formulations was in the concentration of mucilage, which ranged from 0.0 % to 2.0 % (Table 1). 

Table 5 

The pH values of the ice cream ranged from 5.94 (F3) - 6.42 (control sample), which is 

consistent with existing literature that reports pH values between 6 and 7 for ice creams incorporating 

mucilage (11,12,44). The results indicate that the freeze-dried cactus pear pulp significantly 

influenced the pH (p<0.05), with higher freeze-dried cactus pear pulp concentrations leading to lower 

pH values. This effect is similar to findings with quince seed powder in ice creams, where acidic 

compounds contributed to lower pH levels, despite the buffering effects of milk proteins (45). 

The ice creams exhibited intermediate brightness values (L*=39.91–43.68), positive a* values 

(9.98–11.43), indicating a reddish hue, and positive b* values (14.04–20.10), suggesting a yellowish 

tint. This resulted in a brownish color for the ice creams, as shown in Table 5. The observed color is 

consistent with the inclusion of cocoa in the formulation, which imparts a characteristic brown hue to 

the product. 

There was a significant difference (p<0.05) in the color of the ice creams, with higher 

concentrations of freeze-dried cactus pear pulp leading to decreased L* values and increased b* 

values, indicating that the products became darker and more yellow. The freeze-dried cactus pear 

pulp itself had a yellowish-green color, as detailed in Table 4. While the a* parameter of freeze-dried 
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cactus pear pulp did not notably affect the ice cream color—since the positive a* values were primarily 

due to the cocoa addition—there was a discernible color change compared to the control. According 

to Adekunte et al. (46), perceptible color differences can be classified as very distinct (ΔE>3), distinct 

(1.5<ΔE<3), and small differences (ΔE<1.5). All samples showed a very distinct color compared to 

the control sample. It is observed that the higher the percentage of freeze-dried cactus pear pulp, the 

greater the color distinction, indicating that the cactus contributed to altering the color perception of 

the ice creams. 

The incorporation of air into ice cream, known as overrun, is a critical physical characteristic 

that influences its texture, softness, and stability (12). In this study, increasing the levels of freeze-

dried cactus pear pulp in the formulation led to a significant increase (p<0.05) in overrun, with values 

ranging from 19.83 % to 33.89 %. 

Overrun values in ice creams with chia seed mucilage ranged from 25 % to 55 % (13), while 

those with quince seed powder ranged from 26.94 % to 30.03 % (45). Ice creams incorporating chia 

powder exhibited overrun values between 18.82 % and 40.21 % (44), and low-fat ice creams generally 

showed values from 11.64 % to 34.68 % (26). 

The enhancement in overrun resulting from the addition of freeze-dried O. ficus-indica pulp 

presents a potential advantage for the dairy industry. Elevated overrun percentages contribute to 

improved texture and stability in ice creams by reducing ice crystal formation and enhancing product 

consistency throughout storage (47).  

This effect is partly due to the cryostabilizing properties of certain polysaccharides present in 

cactus pear pulp (48). 

Effective resistance to melting and shape retention are essential quality attributes for ice 

cream. Rapid melting can lead to structural loss before consumption, negatively impacting consumer 

satisfaction. Conversely, an excessively slow melting rate may signal potential defects, suggesting 

issues with the ice cream’s formulation or processing (14). 

Specifically, ice creams with higher concentrations of freeze-dried palm pulp exhibited melting 

times of 14.68 minutes and 13.04 minutes for formulations F3 and F2, respectively, demonstrating 

greater resistance to the onset of melting (Table 5). In contrast, there was no significant difference 

(p<0.05) in the melting rate. 

Fig. 1 illustrates the melting characteristics of the different ice cream formulations, showing 

the ice cream's behavior regarding dripping time and melting rate. It was observed that the time to the 

first drip increased with higher concentrations of freeze-dried forage palm pulp, demonstrating that 

the addition of palm pulp delayed the onset of melting. However, once melting began, the melting rate 

remained unchanged. 
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Fig. 1 

Similar results have been observed in ice creams containing basil seed gum, guar gum, and 

their mixtures, where these ingredients also contributed to improved melting resistance in low-fat ice 

creams (23). 

A reduction in melting times were observed with the addition of quince seed powder, which 

has high polysaccharide and protein contents (48). Similarly, chia seed mucilage powder reduced the 

melting rate in ice creams compared to samples without stabilizers, aligning with results from studies 

using chia seed mucilage as a stabilizer (11). Previous research indicates that high concentrations of 

chia seed mucilage lead to increased melting resistance, attributed to the high viscosity of the ice 

cream mixture (10). 

 

CONCLUSIONS  

The freeze-dried cactus pear pulp demonstrates a high content of dietary fibers and phenolic 

compounds, along with notable technological potential due to its water absorption capacity (WAC), 

water solubility index (WSI), and oil absorption capacity (OAC). 

Ice creams incorporating higher concentrations of freeze-dried cactus pear pulp demonstrates 

a high content of dietary fibers and phenolic compounds, along with notable technological potential. 

Ice creams incorporating higher concentrations of CPP exhibited greater resistance to melting, 

characterized by extended melting onset times. These findings suggest that the freeze-dried cactus 

pear pulp holds promise as a fat substitute and stabilizer for low-fat ice creams, with the most effective 

results achieved at a concentration of 2.0 % freeze-dried cactus pear pulp. Future research should 

focus on the extraction and application of pure mucilage in ice cream formulations, as well as 

rheological studies and sensory evaluations, to further optimize and enhance the results 

obtained.CPP exhibited greater resistance to melting, characterized by lower melting rates and 

extended melting onset times. These findings suggest that the freeze-dried cactus pear pulp holds 

promise as a fat substitute and stabilizer for low-fat ice creams, with the most effective results 

achieved at a concentration of 2.0 % freeze-dried cactus pear pulp. Future research should focus on 

the extraction and application of pure mucilage in ice cream formulations, as well as rheological 

studies and sensory evaluations, to further optimize and enhance the results obtained. 
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Fig. 1. Mass loss of ice cream samples during melting: C – control ice cream, without freeze-dried 

cactus pear pulp addition; F1 – ice cream with 1 % freeze-dried cactus pear pulp addition; F2 – ice 

cream with 1.5 % CPP freeze-dried cactus pear pulp addition; F3 – ice cream with 2.0 % freeze-dried 

cactus pear pulp addition 

 

Table 1. Composition of chocolate ice cream formulations: C (without freeze-dried cactus pear pulp), 

F1 (with 1.0 % freeze-dried cactus pear pulp), F2 (with 1.5 % freeze-dried cactus pear pulp), and F3 

(with 2.0 % freeze-dried cactus pear pulp). 

Ingredient w/% C F1 F2 F3 

Water 53.28 53.28 53.28 53.28 

Skimmed milk powder 13.96 13.96 13.96 13.96 

Cream (35 % fat) 7.07 7.07 7.07 7.07 

Sucrose 6.43 6.43 6.43 6.43 

Inverted sugar 7.35 7.35 7.35 7.35 

Dextrose 5.05 5.05 5.05 5.05 

Stabilizer 0.94 0.94 0.94 0.94 

Emulsifier 0.94 0.94 0.94 0.94 

Cocoa powder 2.98 2.98 2.98 2.98 
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Table 2. Composition of freeze-dried cactus pear pulp. 

Parameters w/% Freeze-dried cactus pear pulp 

Protein 8.17±0.00 

Lipid 1.46±0.05 

Ash 16.85±0.05 

IDF 26.07±3.07 

SDF 17.26±1.06 

TDF 43.34±2.04 

Carbohydrate 73.52 

K 4.94±1.86 

Ca 3.15±1.72 

Mg 0.93±0.11 

P 0.15±0.02 

Moisture 8.47±0.29 

Total solids 91.53±0.29 

w (TSPC as GAE)/(mg/100 g)  1242.16±49.44 

aw 0.37±0.00 

pH 4.35±0.08 
Results are expressed as mean value±standard error. CPP: freeze-dried cactus pear pulp; IDF: insoluble dietary 
fiber; SDF: soluble dietary fiber; TDF: total dietary fiber; TSPC: total soluble phenolic compounds; GAE: gallic 
acid equivalent. 

 

Table 3. Fatty acid profile of freeze-dried cactus pear pulp 

Fatty Acids 
IUPAC 

nomenclature 
Common 

nomenclature 
 w/% 

Saturated fatty acids (SFA)    

C6:0 Hexanoic acid Caproic acid 0.23±0.00 

C8:0 Octanoic acid Caprylic acid 0.30±0.01 

C12:0 Dodecanoic acid Lauric acid 0.34±0.01 

C13:0 Tridecanoic acid Tridecylic acid 0.50±0.01 

C14:0 Tetradecanoic acid Myristic acid 0.69±0.03 

C16:0 Hexadecanoic acid Palmitic acid 26.89±0.49 

C17:0 Heptadecanoic acid Margaric acid 1.29±0.03 

C18:0 Octadecanoic acid Stearic acid 2.54±0.01 

C24:0 Tetracosanoic acid Lignoceric acid 3.86±0.13 

∑SFA   36.63 

Monounsaturated fatty acids 
(MUFA) 

  
 

C18:1n9c 
9-Octadecenoic 

acid (cis) 
Oleic acid 

9.36±0.24 

∑MUFA   9.36 

Polyunsaturated fatty acids 
(PUFA) 
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C18:2n6c 
cis-9, cis-12-

Octadecadienoic 
acid 

Linoleic acid 
41.59±0.65 

C18:3n3 
cis-9, cis-12, cis-15-

Octadecatrienoic 
acid 

Linolenic acid 
12.43±0.16 

∑PUFA   54.01 

n6/n3   3.35 

Results are expressed as mean value±standard error. SFA: saturated fatty acids; MUFA: monounsaturated fatty 
acids; PUFA: polyunsaturated fatty acids; n6/n3: ratio between omega-6 and omega-3 fatty acids 

 

 

Table 4. Physical characteristics of freeze-dried cactus pears pulp 

Parameters Results 

WAC/(g/g DM) 5.60±0.13 

WSI/% 42.37±8.26 

OAC/(g/g DM) 2.93±0.02 

L* 79.86±0.11 

a* -7.11±0.05 

b* 27.09±0.30 

Results are expressed as mean value±standard error. WAC: water absorption capacity; WSI: water solubility 
index; OAC: oil absorption capacity; DM: dry matter.  

 

 

Table 5. Evaluated parameters of physical properties of ice cream samples: C (without freeze-dried 

cactus pear pulp), F1 (with 1.0 % freeze-dried cactus pear pulp), F2 (with 1.5 % freeze-dried cactus 

pear pulp), and F3 (with 2.0 % freeze-dried cactus pear pulp) 

Parameters C F1 F2 F3 

w (total 
solids/(g/100g) 

(42.00±0.75)ns (41.61±0.05)ns (40.88±0.11)ns (41.16±0.63)ns 

pH (6.42±0.05)a (6.16±0.01)b (6.01±0.01)c (5.94±0.00)d 

Overrun (19.83±0.00)d (20.23±0.00)c (26.79±0.00)b (33.59 ±0.00)a 

L* (43.68±0.62)a (39.91±0.97)b (41.02±0.77)ab (41.21±1.50)ab 

a* (11.03±0.32)ab (9.98±0.49)c (10.54±0.09)bc (11.43±0.11)a 

b* (14.04 ±0.18)d (15.09±0.28)c (18.06±0.11)b (20.10±0.31)a 

ΔE* 0.00 4.09 4.94 6.60 

Melting rate/(g/min) (0.70±0.13)ns (0.70±0.07)ns (0.64±0.18)ns (0.64±0.04)ns 

t(first dripping)/min (11.50b±1.22)c (10.18±0.78)c (13.04±0.48)ab (14.68±0.34)ª 

Results are expressed as mean value±standard error. ΔE: total color difference. Different letters on the same 
line indicate significant differences between samples at the 5 % significance level, according to the Tukey test.  
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SUPPLEMENTARY MATERIAL 

 

Fig. S1. Process for obtaining freeze-dried cactus pear pulp 

 


