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SUMMARY
Inulinases are an important class of industrial enzymes which are used for the 

production of high-fructose syrup and fructooligosaccharides. Inulin, a polyfructan, is 
generally employed for the production of inulinase, which is a very expensive substrate. 
A number of agroindustrial residues have been used for cost-effective production 
of inulinases. In the present study, carrot pomace was selected as a substrate for the 
production of inulinase by Penicillium oxalicum BGPUP-4 in solid-state fermentation. 
Carrot pomace is one of the good substrates for bioprocesses, because it is rich in 
soluble and insoluble carbohydrates. A central composite rotatable design (CCRD) used 
in response surface methodology was employed for the optimal production of inulinase 
from carrot pomace. Using CCRD, 15 runs were practiced to optimize the range of three 
independent variables: moisture content (70-90 %), incubation time (4-6 days) and pH 
(5.0-7.0) for inulinase production. Carrot pomace supplemented with 0.5 % inulin as 
an inducer, 0.2 % NH

4
H

2
PO

4
, 0.2 % NaNO

3
, 0.2 % KH

2
PO

4
, 0.05 % MgSO

4
·7H

2
O and 0.001 

% FeSO
4
·7H

2
O was used for the production of inulinase in solid-state fermentation at 

30 °C. Inulinase production (322.10 IU per g of dry substrate) was obtained under the 
optimized conditions, i.e. moisture content of 90 %, incubation time 4 days and pH=7.0. 
The corresponding inulinase/invertase (I/S) ratio (3.38) was also high, which indicates the 
inulolytic nature of the enzyme. Multiple correlation coefficients R for inulinase production 
and I/S ratio were 0.9995 and 0.9947, respectively. The R value very close to one indicates 
an excellent correlation between experimental and predicted results.

Key words: inulinase, carrot pomace, Penicillium oxalicum, solid-state fermentation, re-
sponse surface methodology

INTRODUCTION
Inulinases are important industrial hydrolysing enzymes which belong to glycoside 

hydrolase (GH) family 32. They act on β-2,1 linkages of inulin to produce high-fructose syr-
up (HFS) or fructooligosaccharides (FOSs). On the basis of their degrading action on inu-
lin, inulinases are classified as exoinulinases or endoinulinases. Exoinulinase (EC 3.2.1.80, 
β-2-1-d-fructan fructohydrolase) acts sequentially on inulin to liberate fructose units from 
its non-reducing end, while endoinulinase (EC 3.2.1.7, β-2-1-d-fructan fructanohydrolase) 
randomly hydrolyses internal linkages of inulin to release FOSs. The two major applica-
tions of inulinases are the production of HFS (1-3) and FOSs (4,5). Microbial sources such 
as filamentous fungi, yeast and bacteria are considered as a preferred choice for inulinase 
production over plant and animal sources (6,7). This may be ascribed to their easy culti-
vation and high enzyme yield. In recent years, interest in exploring fungal inulinase sources 
has increased tremendously (8). This can be attributed to their advantageous features 
like growth on low-value substrates and synergism between exo- and endoinulinase for 
end-product formation. Amongst them, Aspergillus sp. and Penicillium sp. are reported as 
good inulinase producers (6). 
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Fermentation technique, type of microorganism and me-
dium constituents are some key factors which play a vital role 
in enzyme production. Conventionally, inulinases are pro-
duced by submerged fermentation (6,7), however, solid-state 
fermentation (SSF) has also been used for their production 
(6,7). Fungal sources, due to their xerophytic characteristics, 
can easily flourish at low moisture level and they are prefer-
entially used to carry out SSF of solid substrates. Wheat bran, 
soybean bran, sugarcane bagasse, press mud, artichoke, ba-
nana leaves, chicory root, garlic waste, orange rind, etc. are 
some common solid substrates used for inulinase production 
(6). The use of agroindustrial wastes like apple pomace, car-
rot pomace, orange rinds, etc. as substrates has gained inter-
est of researchers, due to their easy availability and low cost. 
Amongst them, carrot pomace has been determined to pos-
sess various potential applications. It is an important byprod-
uct of carrot juice extraction unit. The pomace is quite per-
ishable as it contains 88 % of moisture and is a rich source of 
carotenoids, uronic acids, dietary fibre and neutral sugars (9). 
Previously, it was mostly utilized as a cattle feed and manure. 
Due to the increasing trend towards efficient utilization of 
agroindustrial residues, carrot pomace has also been used for 
the supplementation of several bakery and functional prod-
ucts (9). Recently, it has also been used for the bioethanol pro-
duction (10). In the present investigation, production of inu-
linase from carrot pomace by Penicillium oxalicum BGPUP-4 
under SSF was carried out using response surface methodol-
ogy. This is the first report on inulinase production from car-
rot pomace by SSF.

MATERIALS AND METHODS

Fungal culture

Penicillium oxalicum BGPUP-4, an isolate from our labora-
tory (Punjabi University, Patiala, India), was used for the pro-
duction of inulinase. The fungal culture was maintained on 
potato dextrose agar (PDA; HiMedia Laboratories Pvt. Ltd., 
Mumbai, India) slants as described previously (11).

Inoculum preparation

Inoculum was prepared by growing a stock culture of P. 
oxalicum BGPUP-4 in Erlenmeyer flasks containing PDA at 30 
°C for 5 days. After incubation, fungal spores were harvest-
ed and suspended in sterile distilled water containing 0.01 % 
(by volume) Tween 80 (HiMedia Laboratories Pvt. Ltd). The 
spores were dislodged from the hyphae with the aid of a ster-
ile glass rod. Thereafter, the spore suspension was filtered 
through a sterile absorbent cotton wool plug to remove any 
remaining traces of hyphal fragments. The number of spores 
was counted using a haemocytometer (model BR718920; Sig-
ma-Aldrich, St. Louis, MO, USA) and microscope (model CH20i; 
Olympus Opta Systems Pvt. Ltd, New Delhi, India). The num-
ber of spores in the inoculum was adjusted to 104 spore/mL 
with presterilized distilled water, under aseptic conditions.

Preparation of substrate

Fresh carrots were procured from the local market, Patiala, 
India. After thorough washing, they were crushed properly in a 
juice extraction machine (Philips India Ltd., Gurgaon, India) to 
obtain juice. Carrot residue obtained after the extraction was 
pressed and dried in an oven (Narang Scientific Works Pvt. Ltd, 
New Delhi, India) at 50 °C, until it dehydrated completely. The 
dried carrot pomace was ground using mortar and pestle to 
uniform powder and passed through a 150-µm sieve.

Solid-state fermentation

Solid-state fermentations (SSF) were carried out in Erlen-
meyer flasks (250 mL) containing 10 g of carrot pomace mois-
tened with distilled water containing (in %, mass per volume): 
inulin 0.5, NaNO

3
 0.2, KH

2
PO

4
 0.2, KCl 0.1, MgSO

4
·7H

2
O

 
0.05, 

FeSO
4
·7H

2
O 0.001 and NH

4
H

2
PO

4
 0.2 (all from HiMedia Labo-

ratories Pvt. Ltd.). Three variables optimized for inulinase pro-
duction using statistical experimental model are A: moisture 
content (70-90 %), B: incubation time (4-6 days) and C: pH (5-
7), while the other above-mentioned medium constituents 
were kept constant during the progression of the study. The 
Erlenmeyer flasks were sealed with hydrophobic cotton and 
autoclaved at 121 °C for 30 min. Preliminary studies showed 
no changes in the moisture content of the substrate after au-
toclaving. After cooling, the flasks were inoculated with previ-
ously prepared 2 mL of spore suspension (104 spore/mL) and 
mixed uniformly with a sterile glass rod, under aseptic condi-
tions. Subsequently, flasks were incubated in an environmen-
tal chamber (model CHM-10 Plus; REMI Lab World, Mumbai, 
India) with temperature and humidity control. 

Statistical optimization of inulinase production by P. 
oxalicum BGPUP-4 using carrot pomace as substrate

Optimization of fermentation conditions is an important 
factor in developing feasible bioprocess to obtain desirable 
product. Optimal processing conditions can be constituted 
using an efficacious statistical experimental model. Central 
composite rotatable design (CCRD) used in response surface 
methodology (RSM) is a collection of several statistical mod-
els and has been employed to study the influence of three 
different variables and their combined interactions on inuli-
nase production by P. oxalicum BGPUP-4. Statistical analysis 
was carried out using Design expert v. 7.0.0 software package 
(Stat-Ease Inc., Minniapolis, MN, USA). The variables were op-
timized using 23 factorial design. The five coded levels used 
to study three independent variables were -1.414, -1, 0, 1 and 
1.414 (Table 1). CCRD produced a total of 15 combinations 
which comprised four factorial and six axial points, and five 
replicates at the centre point. The experimental runs 1, 3-5 
and 14 at the centre point were used to find experimental in-
accuracy and duplicability of the results. All the experiments 
were carried out in triplicates. To substantiate the model’s ac-
curacy, validation of experiments was performed to equate 
predicted and experimental results. 
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Inulinase production and I/S ratio were the two responses 
on which the influence of three chosen independent variables 
was anticipated. A multiple regression analysis of experimen-
tal data obtained from an empirical model was accomplished 
using least square method, to fit into the following second-or-
der polynomial equation: 

 Y=β
0
+∑β

i
X

i
+∑β

ii
X

i
2+∑ β

ij
X

i
X

j
 /1/

where Y is measured response, β
0
 is the intercept term, β

i
 is linear 

coefficient, β
ii
 is quadratic coefficient, β

ij
 is an interaction coeffi-

cient and X
i
 and X

j
 represent coded independent variables. The 

statistical implication of the model was revealed through anal-
ysis of variance (ANOVA) for polynomial model with 95 % confi-
dence level. Student’s t-test and Fisher’s F-test were also applied 
to ascertain statistical significance of regression coefficients and 
to evaluate significance of second-order model equation and 
terms. Besides, the excellence of the polynomial model can be 
exhibited in terms of coefficient of determination (R2), adjust-
ed R2 and adequate precision. The value of R2  is important to 
explain the variability in the observed responses with respect 
to experimental factors and interactions between them. More-
over, 2D contour plots were also analysed to study interaction 
between each variable and its corresponding effect.

Extraction of inulinase

After successful fermentations, the extracellular enzyme 
was extracted by adding 100 mL of sodium acetate buffer (0.1 
M, pH=5.0; HiMedia Laboratories Pvt. Ltd) to the fermented 
substrate in Erlenmeyer flasks. The content of each flask was 
kept under agitation (150 rpm) on a rotary incubator shak-
er (model CIS-24 BL; REMI Lab World) for 2 h at 30 °C for en-
zyme extraction. Thereafter, the extract was filtered through 
Whatman No. 1 filter paper and centrifuged at 3000×g (mod-
el REMI CPR-30 Plus; REMI Elektrotechnik Ltd., Mumbai, India) 
for 10 min at 4 °C. Supernatant was collected as crude inuli-
nase produced by SSF. It was then analysed for inulinase and 
invertase activities. Inulinase/invertase activity ratio (I/S) was 
also calculated.

Analytical techniques

Inulinase assay

Crude enzyme (100 µL) obtained after extraction was 
mixed with 900 µL of substrate solution (2 % inulin; HiMe-
dia Laboratories Pvt. Ltd) in 0.1 M sodium acetate buffer, 
pH=5.0; HiMedia Laboratories Pvt. Ltd). Reaction mixture was 

incubated at 55 °C for 10 min. Then, the reaction was stopped 
by heating the reaction mixture in boiling water bath (model 
NSW-133; Narang Scientific Works Pvt. Ltd) for 10 min. After 
that, reducing sugar content in the mixture was determined 
by 3,5-dinitrosalicylic acid (DNSA) method (12). One unit of 
inulinase is defined as the amount of enzyme that produc-
es one µmol of fructose per minute under assay conditions.

Invertase assay

The reaction mixture (1.0 mL) comprising crude enzyme 
extract (100 µL) and substrate solution (2 % sucrose; HiMedia 
Laboratories Pvt. Ltd) in 0.1 M sodium acetate buffer (pH=5.0; 
HiMedia Laboratories Pvt. Ltd) was incubated at 55 °C for 10 
min. After incubation, the reaction was terminated by de-
grading the enzyme in the reaction mixture at 100 °C for 10 
min. The resultant hydrolysate was analysed for reducing 
sugars by DNSA method (12). One invertase unit is defined as 
the amount of enzyme that produces one µmol of reducing 
sugars per minute under assay conditions.

I/S ratio

Activity of the enzyme on inulin or sucrose as a substrate 
is crucial for its characterization, because of the participation 
of its single active site in both fructan and sucrose hydrolysis. 
Generally, the ratio of activity on inulin versus sucrose (I/S) is 
used to determine catalytic nature of the enzyme. High I/S 
ratio indicates inulolytic nature of the enzyme. I/S ratio was 
calculated from inulinase/invertase activity.

RESULTS AND DISCUSSION

Statistical optimization of significant variables using CCRD 
and ANOVA

Moisture content, incubation time and pH were consid-
ered as significant variables for statistical optimization of in-
ulinase production from carrot pomace in SSF. The experi-
mental design matrix was calculated using CCRD. Linear, 2F1, 
quadratic and cubic models were analysed to find the regres-
sion equation of the experimental data. The experimental de-
sign and the results obtained after statistical optimization of 
the two responses, i.e. inulinase production and I/S ratio are 
shown in Table 2. A suitable model, i.e. quadratic model cho-
sen because of high F value, was assessed on the basis of se-
quential sum of squares and analysis of variance (ANOVA) 
results. The F value is the ratio of the mean squares of the re-
gression and the mean squares of the error, which specifies 
the significance of each factor in the model (13). The higher F 
values of 1173.87 and 104.75 for inulinase production and I/S 
ratio, respectively, justify the significance of the model. The 
experimental results corresponded with a second order poly-
nomial equation. The values of regression coefficients were 
calculated and the fitted equations (in terms of coded values) 
for predicting inulinase production and I/S ratio, regardless of 
the coefficient significance were as given below: 

Table 1. Coded and actual levels of independent variables used in 
experimental design

Independent
variable

Code
Actual level of coded factors

-1.414 -1 0 1 1.414

w(moisture)/% A 65.86 70 80 90 94.14

t(incubation)/day B 3.59 4 5 6 6.41

pH C 4.59 5 6 7 7.41
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Inulinase production=+274.81+1.59·A–11.14·B+0.035·C– 
–12.21·A·B+1.21·A·C–4.11·B·C+4.54·A2+9.59·B2+2.84·C2 /2/

I/S=+4.08–0.19·A–0.046·B–0.088·C–0.22·A·B–0.30·A·C– 
–0.24·B·C–0.21·A2–0.25·B2– 0.18·C2 /3/

where A is moisture content, B is incubation time, and C is pH. 
The statistical relevance of Eqs. 2 and 3 for response sur-

face quadratic model was established by ANOVA. Statistical 
data given in Table 3 indicate that the model is highly sig-
nificant. Fisher’s F-test and student’s t-test were used to de-
termine significance of the coefficients of the independent 
variables. Higher F value and smaller probability>F value con-
firm the significance of the corresponding coefficient term. 
The probability>F value less than 0.05 suggests the signifi-
cance of each coefficient. It is necessary to define the pat-
tern of interaction between the two coefficients (Table 4). The 
smaller the probability>F value, the more significant the cor-
responding coefficient (14-17). A, B, C, AB, AC, BC, A2, B2 and 
C2 are the significant model terms for inulinase production. 
Amongst them, B, AB, BC, A2, B2 and C2 were extremely signif-
icant (p>0.0001). For I/S ratio, A, B, C, AB, AC, BC, A2, B2 and C2 
were also significant, but A2, B2 and C2 were the most signifi-
cant terms (p>0.0001). The degree of freedom for pure error 
for both, inulinase production and I/S ratio, was 4, which once 
more manifests the authenticity of the models. Probability>F 
and F values of the lack-of-fit for inulinase production were 
0.7075 and 0.16, while for I/S ratio they were 0.2441 and 1.86, 

respectively. This implies that the lack-of-fit is not significant 
compared to the pure error, which justifies the fitness of the 
quadratic model for the present study.

The goodness of fit of the model is shown in Table 5. Mul-
tiple correlation coefficient R is a scalar, which is used to de-
fine the correlation between the actual and predicted values 
of the variable. The higher R values of 0.9995 and 0.9947 for 
inulinase production and I/S ratio, respectively, showed good 
agreement between actual and predicted values. The adjust-
ed R2 and predicted R2 were 0.9987 and 0.9973 for inulinase 
production, and 0.9852 and 0.8134 for I/S ratio, respectively. 
A minute difference between the adjusted R2 and predicted 
R2 showed reasonable agreement between the two values. 
Adequate precision measures the signal to noise ratio. A ratio 
greater than 4 is advisable, therefore, the ratio of 118.71 and 
32.61 for inulinase production and I/S ratio, respectively, indi-
cates an adequate signal for the present model and suggests 
that the model can be used to navigate the design space. 

The quadratic models in Eqs. 2 and 3 have nine terms com-
prising three linear terms, three quadratic terms and three 
two-factorial interactions. Out of these terms, the insignificant 
terms (p>0.05) were found only in Eq. 2, which were neglect-
ed, resulting in the following equation:

Inulinase production=+274.81+1.59·A–11.14·B–12.21·A·B+  
+1.21·A·C–4.11·B·C+4.54·A2+ 9.59·B2+2.84·C2 /4/

Table 2. Central composite rotatable design matrix for inulinase production on dry mass basis and inulinase/invertase ratio (I/S) obtained from 
solid-state fermentation of carrot pomace by Penicillium oxalicum BGPUP-4

Run

Factor* Experimental results Predicted results

A B C
Inulinase production

IU/g

I/S Inulinase production

IU/g

I/S 

1 80.00 5.0 6.0 275.00 4.09 274.55 4.11

2 80.00 3.6 6.0 309.80 3.63 310.25 3.39

3 80.00 5.0 6.0 274.00 4.04 274.55 4.11

4 80.00 5.0 6.0 275.30 3.94 274.55 4.11

5 80.00 5.0 6.0 275.20 4.11 274.55 4.11

6 90.00 4.0 7.0 322.10 3.38 321.61 3.33

7 80.00 5.0 7.4 280.60 3.68 281.18 3.54

8 80.00 5.0 4.6 279.50 3.83 280.08 3.42

9 70.00 6.0 7.0 291.80 3.94 291.13 4.35

10 90.00 6.0 5.0 272.70 3.74 272.03 4.27

11 70.00 4.0 5.0 286.20 3.03 285.71 3.24

12 65.86 5.0 6.0 281.70 3.92 282.28 4.11

13 80.00 6.4 6.0 278.30 5.63 279.01 4.84

14 80.00 5.0 6.0 274.40 4.08 274.55 4.11

15 94.14 5.0 6.0 286.20 4.11 286.78 4.11

*Symbols A, B and C are the same as in Table 1
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Table 3. Analysis of variance (ANOVA) for the experimental results obtained from central composite rotatable design

Source* Inulinase production/(IU/g) I/S 

Sum of squares df Probability>F Sum of squares df Probability>F

Model 2744.12 9 <0.0001 1.51 9 <0.0001

A 10.13 1 0.0015 0.15 1 0.0002

B 96.13 1 <0.0001 8.450·10-3 1 0.0703

C 5.000·10-3 1 0.8951 0.031 1 0.0070

AB 298.40 1 <0.0001 0.093 1 0.0006

AC 3.45 1 0.0148 0.18 1 0.0001

BC 33.77 1 <0.0001 0.11 1 0.0004

A2 158.80 1 <0.0001 0.33 1 <0.0001

B2 709.03 1 <0.0001 0.49 1 <0.0001

C2 62.09 1 <0.0001 0.24 1 <0.0001

Residual 1.30 5 8.031·10-3 5

Lack-of-fit 0.051 1 0.7075 2.551·10-3 1 0.2441

Pure error 1.25 4 5.480·10-3 4

Cor total 2745.42 14 1.52 14

*Symbols A, B and C are the same as in Table 1, I/S=inulinase/inverstase, Cor total=corrected total sum of squares

Table 4. Regression coefficients and significance of the quadratic model for inulinase production on dry mass basis and ratio of inulinase and 

invertase (I/S)

Source* Inulinase production/(IU/g) I/S 

Coefficient  
estimate

Standard error F-value
Coefficient 

estimate
Standard error F-value

Intercept 274.81 0.22 1173.87 4.08 0.017 104.75

A 1.59 0.25 38.98 -0.19 0.020 90.77

B -11.14 0.25 1910.08 -0.046 0.020 5.26

C 0.035 0.25 0.019 -0.088 0.020 19.45

AB -12.21 0.36 1148.82 -0.22 0.028 58.03

AC 1.31 0.36 13.28 -0.30 0.028 114.66

BC -4.11 0.36 130.01 -0.24 0.028 70.78

A2 4.54 0.18 611.36 -0.21 0.014 208.26

B2 9.59 0.18 2729.76 -0.25 0.014 301.94

C2 2.84 0.18 239.05 -0.18 0.014 148.33

*Symbols A, B and C are the same as in Table 1

Table 5. Goodness-of-fit

Source Value Source Value

Inulinase production

IU/g
I/S

Inulinase production

IU/g
I/S

S.D. 0.51 0.04 R2 0.99 0.99

Mean 283.85 3.74 Adjusted R2 0.99 0.98

CV/% 0.18 1.07 Predicted R2 0.99 0.81

Press 7.36 0.28 Adeq. precision 118.71 32.61

I/S=inulinase/invertase, S.D.=standard deviation, CV=coefficient of variance
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Effect of independent variables and their interactions on 
inulinase production

The effect of three independent variables on inulinase 
production and I/S ratio was studied. Fig. 1 and Fig. 2 show 
response surface contour plots of the two responses. These 
plots demonstrate pairwise combination of factors, while 
keeping the third one at its optimal level. Moreover, they also 
highlight the role of each factor. The effects of different com-
binations of the three variables were interpreted. It is appar-
ent from the plots that moisture content has a profound effect 
on inulinase production, which increases with the increase 
in moisture content. Maximum inulinase production was ob-
tained at moisture level of 90 %, while at its further increase, 
decrease in inulinase production was observed (Figs. 1a and 

1b). Similar response of moisture content on inulinase pro-
duction by Pichia guilliermondii in SSF has also been reported 
(18). Nuñez-Gaona et al. (19) also reported that only a certain 
level of moisture is enough to accelerate nutrient absorption, 
normal metabolic function and fungal conidial production. 
Requirement of moisture content can vary from species to 
species. Generally, minimum of 20 % of moisture level is es-
sential for fungal growth, while very high moisture content 
may retard conidial induction (19). The increase in pH up to 
7.0 has also shown a significant influence on inulinase pro-
duction. However, further increase in pH decreased the inuli-
nase production (Figs. 1b and 1c). A small change in ion bal-
ance can instantly affect fungal growth by creating alterations 
in its cell surface, which concatenates enzyme production or 

Fig. 1. Response surface contour plots of: a) moisture content and incubation time, b) moisture content and pH, and c) incubation time and pH 
for inulinase production by Penicillium oxalicum BGPUP-4

a)

c)

b)
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reduction. Our findings are in abidance with the results ob-
tained with Pichia guilliermondii (18), A. niger (20) and Kluyver-
omyces marxianus (21), where maximum inulinase production 
was reported at pH close to 7.0. Incubation time is also a piv-
otal factor for enzyme production. It has been reported that 
incubation period influences pH of the medium. With ex-
tended incubation period, CO

2
 or acidic metabolites released 

by aerobic microbial cells accumulate in the medium, which 
makes it slightly acidified (22). P. oxalicum BGPUP-4 produced 
maximum inulinase after 4 days of incubation. After 4 days of 
fermentation, a slight decrease in inulinase production was 
observed, which may be attributed to secretion of proteases 
into the medium that denature the enzyme by hydrolysing 
peptide bonds between amino acids. Additionally, change in 

medium optimal conditions with incubation time may also 
have contributed to inulinase inhibition. Our results corrobo-
rate the findings on inulinase production by Bacillus safensis 
(23) and Penicillium funiculosum (24).

Many microbial sources have been reported to possess re-
markable invertase activity along with inulinase activity. This 
mainly occurs due to the specificity of single active site of an 
enzyme for both inulin and sucrose as substrates. Hence, I/S 
ratio is used to distinguish the catalytic activity of the enzyme 
and to determine its inulinase or invertase activity. I/S ratio 
greater than 10-2 determines inulinase activity, while ratio low-
er than 10-4 demonstrates invertase activity (25). In the present 
study, maximum inulinase was produced at I/S ratio of 3.38. 
High I/S ratio confirmed the inulolytic nature of the produced 

Fig. 2. Response surface contour plots of: a) moisture content and incubation time, b) moisture content and pH, and c) incubation time and pH 
for inulinase and invertase ratio (I/S) produced by Penicillium oxalicum BGPUP-4

a)

c)

b)
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