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Summary

Currently, mathematical models that propose to describe the performance of solid sta-
te fermentation bioreactors use simple empirical equations to describe the growth kinetics.
However, a systematic analysis of the growth profiles in solid state fermentation systems
has not previously been undertaken. In the present work various empirical equations, in-
cluding the linear, exponential and logistic equations, were fitted to profiles obtained from
the literature. The logistic equation gave an adequate description of the whole growth pro-
file in the majority of cases, although in many cases the description is not perfect, with
systematic deviations from the best fitting logistic curve, especially decreases in biomass
concentration in the later stages of the fermentation and over- or underestimation of the
initial biomass concentration by the fitted curve. Clearly, although the logistic equation is
commonly used in mathematical models of bioreactor performance, it cannot be treated as
though it is a universally applicable equation in solid state fermentation systems. Various
improvements that will be necessary before empirical growth equations become truly use-
ful are identified and discussed.
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Introduction

This paper provides a systematic analysis of the mi-
crobial growth profiles that have been reported for solid-
-state fermentation (SSF) systems over the last 20 years,
concentrating on identifying empirical kinetic equations
appropriate for use in current models of SSF bioreactors.

Solid-state fermentation involves the growth of mi-
croorganisms in beds of moist solid substrate particles

in the absence or near-absence of free liquid water in the
spaces between the particles. This fermentation techni-
que has the potential to produce a number of biotechno-
logical products more efficiently than the more traditio-
nal submerged liquid fermentation (SLF). For example,
in the production of fungal spores for use as biopesti-
cides, not only are spore yields typically higher in SSF
than in SLF (1) but also the spores produced in SSF are
more robust and more virulent than spores produced in
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SLF (2). Another example is the production of fungal en-
zymes, where higher yields are often obtained in SSF
systems (3). Commodity chemicals for which SSF could
be a competitive technology include citric acid, food co-
lorants based on microbial pigments, gibberellic acid,
aromas, flavors and polysaccharides, amongst others (3).
However, despite this potential, relatively few SSF pro-
cesses manage to be successfully commercialized.

The major problem that hinders the commercializa-
tion of new SSF processes is that in large scale bioreac-
tors it is difficult to control the conditions within the
substrate bed at the optimum values for growth and
product formation. This problem arises from the poor
heat and mass transfer properties of solid beds (4). Until
recently the understanding of how to overcome these
challenges was very poor, due to the physical and dy-
namic complexity of the system. Several factors contrib-
ute to this complexity. Within the substrate bed there is
a complex 3-dimensional arrangement of substrate parti-
cles, microbial biomass and air. Temperature gradients
occur across the substrate bed when the bed is static or
only infrequently mixed. Concentration gradients of ox-
ygen and nutrients arise within substrate particles since
mass transfer within the particle is limited to diffusion.
Within this complex system, either physical or microbial
phenomena may limit growth at different stages of the
fermentation. Further, the way in which these phenom-
ena interact is different in different microbe-substrate-
bioreactor systems. This complexity is not encountered
in SLF systems, and, as a result, bioengineering princi-
ples for SLF are well-established, but similar principles

are only now beginning to be established for SSF. Due
to this poor understanding, the design and operation of
bioreactors for SSF processes has typically been done on
a trial and error basis, which results in processes of low
efficiency and therefore prejudices the economic perfor-
mance of the processes. As a result, very few of the lar-
ge number of processes being researched at laboratory
scale manage to become commercialized. There is an ur-
gent need to develop rational strategies for optimizing
the design and operation of SSF bioreactors in order to
increase the efficiency of the processes and therefore their
economic viability.

Mathematical models will be essential tools in the
development of rational strategies for the design and op-
timization of operation of large-scale bioreactors, as has
recently been shown for various bioreactor types: tradi-
tional packed-bed bioreactors (5,6), the Zymotis biore-
actor, which is a variant of the packed bed design with
internal heat transfer plates (7), rotating drum bioreac-
tors (8), scraped drum bioreactors (9,10) and stirred bio-
reactors (10).

Mathematical models of SSF bioreactors can be thought
of as consisting of macroscale and microscale submodels
(11): The macroscale submodel describes the transfer of
heat and mass across the substrate bed as a whole and
between the bed and the headspace and the bioreactor
wall (Fig. 1, right hand side). The microscale submodel
describes the growth kinetics of the microorganism and
how these kinetics depend on various of the processes
that occur at the scale of individual particles (Fig. 1, left
hand side). The microscale phenomena that could po-
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tentially be included in the growth kinetic submodel in-
clude: how the growth rate of the microorganism depends
on the local environmental conditions such as tempera-
ture, water activity, pH, and oxygen and nutrient con-
centrations; intraparticle processes such as diffusion of
enzymes, hydrolysis of polymers by these enzymes and
the diffusion of the hydrolysis products; and (3) mor-
phological characteristics such as the division of cells
and, in the case of processes involving fungi, the exten-
sion and branching of hyphae.

It is possible to model these microscale phenomena
in some detail. A model relating growth to the intrapar-
ticle diffusion of enzymes and hydrolysis products was
proposed by Mitchell et al. (12), and used to show that
the rate of diffusion of the hydrolysis products to the
surface could potentially limit growth. This model was
extended to describe oxygen diffusion (13), the reduc-
tion of particle size (14), and the transport of nutrients
within the microbial biomass layer (15). Viniegra-Gonza-
lez et al. (16,17) proposed a model for growth that was
based on an assumption of symmetrical branching with-
in the mycelium, with this model being later extended
to describe the effect of temperature on growth (18).

However, in combining the microscale submodel
with the macroscale submodel to produce a bioreactor
model, a decision must be made about the level of detail
with which the microscale phenomena will be describ-
ed, this decision being made on the basis of the trade-off
between the predictive power and flexibility of the mo-
del and its simplicity. Given the fact that in the majority
of bioreactors there are significant gradients at the ma-
croscale, which leads to the appearance of partial differ-
ential equations in the macroscale submodel, the ap-
proach to modeling the microscale phenomena that has
been employed to date in bioreactor models is to use
relatively simple equations to describe the growth kinet-
ics, and not to try to describe the microscale mass trans-
fer and growth mechanisms involved (11). An important
consequence of this decision is that such bioreactor mo-
dels do not describe the dependence of growth on the
substrate concentration, because to do so would require
modeling of the intraparticle diffusion processes (12).
Note that the one exception to this is the case of air-
solid fluidized beds, in which, due to the macroscale ho-
mogeneity, models have concentrated on describing the
intraparticle processes (19,20).

The desire to avoid the situation in which growth is
modeled as depending on the substrate concentration
limits the growth kinetic submodels of SSF bioreactor
models to simple empirical equations. Given the impor-
tance of these empirical growth equations, it is essential
that they be well-founded in experimental data. How-
ever, a systematic analysis of growth profiles in SSF sys-
tems has not been previously made. The current work
undertakes such an analysis and raises and discusses a
number of issues related to the characterization of
growth kinetics in SSF systems.

Survey of Empirical Kinetic Equations that Have
Been Proposed and Issues Related to their Use

The linear, exponential and logistic equations have
typically been used to characterize growth profiles in
SSF (21). Table 1 shows the differentiated and integrated

forms of these equations and a more recent empirical
growth model that was developed in order to describe
those profiles in which there is a rapid early acceleration
of growth followed by a sudden deceleration and a
drawn out period during which the growth rate deceler-
ates further (22). This model is referred to as the two-
phase model because it uses different equations for the
two growth phases.

Note that none of the equations describes the lag
phase of the growth cycle, although with very low ini-
tial biomass concentrations both the exponential equa-
tion and the logistic equation can give a very slow ini-
tial increase in biomass concentration, which can appear
to be a lag phase. Only the logistic equation describes a
final limitation on the amount of biomass. Since none of
the equations actually proposes to describe the whole
growth phase, for the fitting of the equation it is often
necessary to select only that interval of the data that fol-
lows the particular growth kinetics being fitted.

Various different units can be and have been used
by researchers for the measurement of biomass (X) in
the construction of growth profiles. In some cases the
profiles are plotted as the grams of dry biomass per
gram of initial dry substrate, whereas in other cases
they are plotted as the grams of dry biomass per gram
of dry matter in the sample. These two systems of units
are not the same, due to the fact that the growth process
results in the loss of mass from the system in the form
of the carbon within the carbon dioxide liberated by the
microorganism. In the case of the biomass concentration
expressed as grams of dry biomass per gram of initial
dry substrate, the value of this variable can only in-
crease as a result of the production of new biomass. In
the case of the biomass concentration expressed as
grams of dry biomass per gram of dry matter in the
sample, the variable changes as a result of two pro-
cesses, the production of new biomass and the loss of
dry matter from the substrate in the form of carbon di-
oxide. For example, in the extreme case of a culture that
is not growing but is respiring for maintenance purpo-
ses, the grams of dry biomass per gram of dry matter in
the sample will continue to increase. It is not possible to
convert from one system of units to the other by use of
a simple conversion factor. Conversion requires the use
of a growth and substrate consumption model, and
knowledge of the yield and maintenance coefficients.
More will not be said on this topic in the current work,
however, the difference of the two systems must be kept
in mind when analyzing the graphs. A kinetic profile
obtained using one measurement system would not nec-
essarily have had the same shape if it had been obtained
using the other measurement system. Note that, in
themselves, the empirical growth kinetic equations sim-
ply describe the shape of the growth profile, and make
no assumption about the units used to measure the bio-
mass.

The units of grams of dry biomass per gram of ini-
tial dry substrate are commonly used in those studies
that employ an experimental strategy in which a large
number of identical flasks, or small packed-bed col-
umns, are prepared, with one or more individual flasks
being removed at each sampling time. The contents of
each flask or column are homogenized and then sub-
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jected to analysis. With this experimental strategy, it is
simple to know to how much initial dry matter the ma-
terial in the flask at the time of sampling corresponds.
In effect, this strategy involves the separation of the
samples before the fermentation. It is common in SSF
studies due to the problems encountered when remov-
ing samples from a static bed: Firstly, due to the hetero-
geneity in a static bed, no one sample is representative
of the whole bed, and secondly, in the removal of sam-
ples from one large bed, it is virtually impossible to pre-
vent the disruption of the material that remains in the
bed. The strategy of separating the samples before the
fermentation allows samples to be removed without dis-
ruption of the other samples and theoretically at any
sampling time all the flasks or columns are identical.

The units of grams of dry biomass per gram of dry
matter in the sample are commonly used when samples
are removed from a larger mass within a bioreactor.
This is a reasonable experimental strategy for a continu-
ously or intermittently mixed bed, in which any sample
should be reasonably representative of the whole bed. It
is not a simple matter in this case to know to how much
initial dry matter the sample corresponds, although this
could be calculated if the whole bioreactor contents
were weighed before and after each sampling event and
the dry weight of the samples were determined.

A further complication of kinetic studies is that typ-
ically in SSF systems it is not possible to measure the
dry weight of biomass directly, especially in processes
involving fungi, since the fungal biomass penetrates into
the substrate and it is usually not possible to separate
and recover the biomass quantitatively. In this case, in-
direct measurements of growth will typically be used,
such as the measurement of biomass components such
as glucosamine, ergosterol and protein, and therefore
the variable X will represent a component of the bio-
mass and not the dry biomass itself. Analysis of the ki-
netics of growth profiles obtained with indirect methods
is complicated by the fact that the biomass composition
typically varies during the growth cycle. This has been
noted for protein content (23) and glucosamine content
(10). The implications of this variation are discussed
later. As a result of these difficulties in biomass mea-
surements, several studies of growth in SSF have been
undertaken in artificial systems designed to mimic the

environment of SSF while allowing the direct measure-
ment of the biomass, such as membrane culture (24) and
amberlite resin (25). Several of the growth profiles ana-
lyzed in the present work were obtained in such sys-
tems.

It is also possible to follow the growth process by
measuring the consumption of oxygen or the liberation
of carbon dioxide by cultures. However, conversion of
measured cumulative gas consumption or evolution
profiles into biomass is not simple due the fact that gas
metabolism is related to both growth metabolism and
maintenance metabolism. In fact, to interpret such pro-
files, it is typically necessary to be able to undertake cali-
bration experiments in which the growth kinetics are
determined on the basis of direct measurement of the
biomass, such as in the artificial systems mentioned in
the previous paragraph. These issues are beyond the
scope of the current work, and therefore analysis of ki-
netics based on gas metabolism is not done here.

The above considerations show that the variable X
within the kinetic equations presented in Table 1 can
have different units, depending on how the experiment
was undertaken. The units of X affect the units of the
parameters of the equations, which must have the nec-
essary units to maintain the dimensional consistency of
the equations.

Application of the Empirical Equations
to Kinetic Profiles from the Literature

The various growth profiles in SSF systems that are
available in the literature were analyzed by fitting the
integrated forms of the equations to the data by non-lin-
ear regression. A wide range of papers were consulted,
although relatively few show growth profiles for which
kinetic analysis can be done. The papers that contained
such growth profiles are summarized in Table 2 (12,18,
25–75). The results of the analyses are shown in Tables 3
to 6.

One of the most striking points is that only relati-
vely few of the growth profiles presented in the litera-
ture are of sufficient quality, in terms of the number of
data points collected, to allow the type of kinetics to be
determined with confidence. Many of the growth pro-
files have relatively few points. In some cases this lack
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Table 1. Differentiated and integrated forms of the various empirical growth equations that have been applied to SSF systems

Differentiated form Integrated form

Linear dX

dt
K= /1/ X Kt X= + 0 /5/

Exponential dX

dt
X= m /2/ X X e t= ×

0
m /6/

Logistic dX

dt
X

X

Xm

= -
æ

è
ç

ö

ø
÷m 1 /3/ X

X

X

X
e

m

m t

=

+ -
æ

è
ç

ö

ø
÷ ×1 1

0

-m

/7/

Two phase dX

dt
X= m t < ta /4a/

dX

dt
Le Xk t t a= - -m ( ) t � ta /4b/

X X e t= ×
0

m t < ta /8a/

( )X X
L

k
eA

k t t a= -é
ëê

ù
ûú

- -exp ( )m
1 t � ta /8b/



275G. VICCINI et al.: Analysis of Growth Kinetic Profiles in SS Fermentation, Food Technol. Biotechnol. 39 (4) 271–294 (2001)

Table 2. Literature studies that permit the analysis of the kinetics of growth in solid-state fermentation

Microorganism Substrate Ref. Location in the original article

Rhizopus oligosporus Rice bran in a membrane culture system 18 Fig. 4(A), 37 °C

Rhizopus oligosporus Cassava starch in a membrane culture
system

12 Fig. 2

Bacillus licheniformis Wheat bran 26(a) Fig. 3, standardized WB medium

Wheat bran 26(b) Fig. 3, basal WB medium

Aspergillus niger Sugar cane bagasse 27(a) Fig. 2, sugar cane bagasse

Impregnated Amberlite 27(b) Fig. 2, Amberlite IRA-900

Penicillium commune Yeast extract sucrose agar in a
membrane culture system

28(a) Table 1, dry weight/mg

28(b) Table 1, protein

Aspergillus flavus Yeast extract sucrose agar in a
membrane culture system

28(c) Table 2, dry weight/mg

28(d) Table 2, protein

Trichoderma reesei Wheat bran 29(a) Fig. 2, 305 K

29(b) Fig. 2, 299 K

29(c) Fig. 2, 311 K

29(d) Fig. 2, 293 K

Beauveria bassina Impregnated clay granules 30(a) Fig. 2a

Gibberella fujikurol Sponge 30(b) Fig. 2b

Fusarium oxysporum Sugar beet pulp 30(c) Fig. 2c

Aspergillus niger Impregnated Amberlite 25 Fig. 1

Aspergillus parasiticus Cassava meal 31 Fig. 2

Aspergillus carbonarius Canola meal 32(a) Fig. 2, 12 g glucose

32(b) Fig. 2, 24 g glucose

32(c) Fig. 2, 4 g glucose

32(d) Fig. 2, 6 g glucose

32(e) Fig. 2, 0 g glucose

32(f) Fig. 2, 2 g glucose

Aspergillus oryzae Long-grain milled rice 33 Fig. 3

Rhizopus oryzae Cassava 34(a) Fig. 1, 4,5 g/100 g cassava

34(b) Fig. 1, 6,8 g/100 g cassava

Rhizopus oligosporus Sago 35(a) Fig. 2, 4 mm

35(b) Fig. 2, mixed

35(c) Fig. 2, 2 mm

35(d) Fig. 2, 3 mm

Rhizopus sp. Sago 35(e) Fig. 3, 2 mm

35(f) Fig. 3, 2 mm

35(g) Fig. 3, 4 mm

35(h) Fig. 3, mixed

Phanerochaete chrysosporum Waste cellulose 36 Fig. 3, protein

Gibberella fujikuroi Commercial wheat bran 37 Fig. 1, dry biomass

Sporotrichum cellulophilum Wheat bran seed culture 38(a) Fig. 5, 65 % water content

38(b) Fig. 5, 54 % water content

38(c) Fig. 5, 43 % water content

38(d) Fig. 5, 36 % water content

Aspergillus oryzae var. brunneus Steamed rice 39(a) Fig. 2, 40 % water content

39(b) Fig. 2, 35 % water content

39(c) Fig. 2, 30 % water content

39(d) Fig. 2, 25 % water content

Rhizopus oligosporus Cassava starch 40(a) Fig. 1, MAX

40(b) Fig. 1, mashed MZ-2N

40(c) Fig. 2, mashed cassava

40(d) Fig. 2, chipped cassava

Rhizopus oligosporus Cassava starch 41(a) Fig. 1, conical flasks

41(b) Fig. 1, packed bed

41(c) Fig. 1, tray

41(d) Fig. 1, roller bottle

Agaricus bisporus Autoclaved rye grain 42(a) Fig. 1, mycelial dry wt

42(b) Fig. 4, mycelial extension

Aspergillus niger Cassava starch 43 Fig. 2
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Microorganism Substrate Ref. Location in the original article

Aspergillus niger Cassava meal 44(a) Fig. 3, moisture content 55 %

44(b) Fig. 3, moisture content 60 %

44(c) Fig. 3, moisture content 50 %

44(d) Fig. 3, moisture content 45 %

44(e) Fig. 3, moisture content 40 %

44(f) Fig. 3, moisture content 35 %

44(g) Fig. 4, temperature 45 °C

44(h) Fig. 4, temperature 30 °C

44(i) Fig. 4, temperature 35 °C

44(j) Fig. 4, temperature 40 °C

44(k) Fig. 5, protein, urea 0 %, NH4 100 %

44(l) Fig. 5, protein, urea 10 %, NH4 90 %

44(m) Fig. 5, protein, urea 20 %, NH4 80 %

44(n) Fig. 5, protein, urea 40 %, NH4 60 %

44(o) Fig. 5, protein, urea 60 %, NH4 40 %

44(q) Fig. 7, protein synthesis

Rhizopus oligosporus Flour-free yellow corn grit 45 Fig. 3, biomass content

Aspergillus niger Kumara 46(a) Fig. 5, 1st layer

46(b) Fig. 5, 2nd layer

46(c) Fig. 5, 3rd layer

46(d) Fig. 5, 4th layer

Aspergillus niger Impregnated Amberlite 47(a) Fig. 3, z = 0.9 cm

47(b) Fig. 3, z = 2.5 cm

47(c) Fig. 3, z = 3.9 cm

47(d) Fig. 3, z = 5.4 cm

47(e) Fig. 3, z = 6.9 cm

Saccharomyces cerevisiae Wheat bran powder 48(a) Fig. 2, fluidized bed culture (solid circles)

48(b) Fig. 6, fluidized bed culture (solid circles)

Aspergillus niger Impregnated Amberlite 49(a) Fig. 4, Q = 1.7 min-1

49(b) Fig. 4, Q = 6.8 min–1

49(c) Fig. 4, Q = 14.9 min–1

Trichoderma reesei

Aspergillus niger

Sweet sorghum silage 50(a) Fig. 2, mixed culture

50(b) Fig. 2, T. reesei alone

50(c) Fig. 2, A. niger alone

Trichoderma reesei Wheat bran 51 Fig. 2

Trichoderma reesei Sugar cane bagasse 52(a) Fig. 1A, T. reesei alone

Trichoderma reesei 52(b) Fig. 1A, T. reesei alone

Aspergillus phoenicis 52(c) Fig. 1A, T. reesei and A. phoenicis

52(d) Fig. 1A, T. reesei and A. phoenicis

Aspergillus oryzae Wheat bran 53(a) Fig. 2, glucosamine

53(b) Fig. 3, glucosamine a

53(c) Fig. 3, glucosamine b

53(d) Fig. 3, glucosamine c

53(e) Fig. 3, glucosamine d

Aspergillus kawachii Rice 54(a) Fig. 4

54(b) Fig. 8, sterile water as a control

54(c) Fig. 8, 2 g glucose

54(d) Fig. 8, 1 g tryptone

54(e) Fig. 8, 2 g glucose + 1 g tryptone

Trichoderma viride Sugar beet pulp 55(a) Fig. 10, averages (squares)

55(b) Fig. 10, raw data (crosses)

Aspergillus oryzae Artificial gel substrate 56(a) Fig. 2, 3.0 kg gel substrate at 0 rpm

56(b) Fig. 2, 1.5 kg gel substrate at 0 rpm

56(c) Fig. 2, 3.0 kg gel substrate at 30 rpm

56(d) Fig. 2, 1.5 kg gel substrate at 30 rpm

56(e) Fig. 2, 3.0 kg gel substrate at 50 rpm

56(f) Fig. 2, 1.5 kg gel substrate at 50 rpm

Trichoderma viride Potato dextrose agar (PDA) 57(a) Fig. 3

57(b) Fig. 5

Table 2. Cont.
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Microorganism Substrate Ref. Location in the original article

Coniothyrium minitans Potato dextrose agar (PDA), 58(a) Fig. 2a

Nutrient agar glucose (NAG), 58(b) Fig. 2b

Nutrient agar starch (NAS) 58(c) Fig. 2c

Penicillium citrinum Wheat bran 59 Fig. 1

Rhyzopus oligosporus Chickpea 60 Fig. 1

Penicillium roqueforti Buckwheat seeds 61(a) Fig. 3, protein content

61(b) Fig. 5, protein content

61(c) Fig. 7, protein content

61(d) Fig. 11, total biomass

61(e) Fig. 14, total protein

61(f) Fig. 14, biomass protein

Candida utilis Impregnated Amberlite 62(a) Fig. 2, Amberlite

Wheat bran 62(b) Fig. 2, Wheat Bran

Impregnated bagasse 62(c) Fig. 2, Bagasse

Impregnated Amberlite 62(d) Fig. 6a, 44 mg dextrose/g IDM

62(e) Fig. 6a, 135 mg dextrose /g IDM

62(f) Fig. 6a, 200 mg dextrose /g IDM

Candida utilis Impregnated Amberlite 63(a) Fig. 2, 1.4 � 107 cells/g IDM

63(b) Fig. 2, 2.2 � 107 cells/g IDM

63(c) Fig. 2, 3.6 � 107 cells/g IDM

63(d) Fig. 3, 40 mg glucose /g IDM

63(e) Fig. 3, 135 mg glucose/g IDM

63(f) Fig. 3, 240 mg glucose/g IDM

63(g) Fig. 7, mineral limitation

63(h) Fig. 7, no mineral limitation

63(i) Fig. 8, biomass

Aspergillus terreus Sugar cane 64(a) Fig. 3, 25 °C

64(b) Fig. 3, 30 °C

64(c) Fig. 3, 35 °C

64(d) Fig. 3, 40 °C

Beauveria bassiana Impregnated clay granules 65(a) Fig. 1, R1

65(b) Fig. 1, R2

65(c) Fig. 1, R3

Aspergillus carbonarius Canola meal 66(a) Fig. 1, Triton X-100

66(b) Fig. 1, Distilled water

66(c) Fig. 1, Tween – 80

66(d) Fig. 1, Sodium oleate

66(e) Fig. 2, 2 % Na-oleate

66(f) Fig. 2, 0 % Na-oleate

66(g) Fig. 2, 0,1 % Na-oleate

66(h) Fig. 2, 0,3 % Na-oleate

66(i) Fig. 2, 0,5 % Na-oleate

66(j) Fig. 2, 1 % Na-oleate

Brevibacterium sp. Sugar cane bagasse 67 Fig. 1, protein

Chaetomium cellulolyticum Sugar cane bagasse 68(a) Fig. 2, NT bagasse

68(b) Fig. 2, WT2 bagasse

68(c) Fig. 2, AT1 bagasse

Aspergillus niger Impregnated Amberlite 69(a) Fig. 2a, 300 g glucose/L

69(b) Fig. 2a, 400 g glucose/L

Aspergillus awamori Wheat bran 70(a) Fig. 1, glucosamine content, SAC

70(b) Fig. 1, glucosamine content, MAC

70(c) Fig. 1, glucosamine content, WAC

Aspergillus oryzae Steamed rice 71(a) Fig. 1A, steamed rice

Rice extrudate 71(b) Fig. 1A, rice extrudate

Aspergillus kawachii Rice 72(a) Fig. 1B, moisture content 0,5

72(b) Fig. 1B, moisture content 0,9

72(c) Fig. 1B, moisture content 0,7

Gibberella fujikoroi Impregnated inert support 73(a) Fig. 1A, initial sugar 2.5 g/g dm

73(b) Fig. 2A, initial sugar 0.5 g/g dm

Monascus purpureus Rice 74 Fig.2, biomass (mg/g IDS)

Gibberella fujikoroi Impregnated inert support 75 Fig. 6, biomass (g/g.i.s)
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Table 3. Kinetic analysis of literature growth profiles using the logistic equation

Ref.
Interval of
data used

h
Xo Xm

Units for
Xo and Xm

m
h

Sum of
squares of
residuals
(SSR)

Comments

27(a) 0–31 0.0001 59.0 mg biomass/g dry
matter

1.70 304 8 data points, however, there are very few points
during the rapid growth phase. Reasonable fit.

27(b) 0–54 0.0001 51.0 mg biomass/g dry
matter

0.481 1.53 8 data points, however, there are very few points
during the rapid growth phase. Good fit.

28(a) 72–168 1.14 299 mg dry biomass 0.049 837 5 data points, well-distributed. Reasonable fit, but
it is difficult to be confident that the kinetics are in-
deed logistic since there is only one point within
the rapid growth phase.

28(b) 72–168 0.004 837 ng protein/agar disk 0.094 1098 5 data points, only 1 during the rapid growth pha-
se. Very good fit.

28(d) 72–168 0.413 6165 ng protein/agar disk 0.066 10086 5 data points. Very good fit, however, there is no
flattening out of the data at the end.

29(a) 2–98 0.023 8.58 mg glucosamine/
g initial dry matter

0.155 0.475 13 data points, well-distributed. Overall fit is good
although the early biomass points are slightly ove-
restimated.

29(b) 2–125 0.018 8.04 mg glucosamine/
g initial dry matter

0.123 9.66 29 data points, well-distributed. Overall fit is good.
The scatter of the data points in the final stationary
phase is relatively large.

29(c) 2–98 0.036 6.43 mg glucosamine/
g initial dry matter

0.112 0.797 13 data points, reasonably well distributed, al-
though a large gap between the first two points in
the early acceleration phase. Reasonably good fit.

29(d) 0–116 0.004 4.79 mg glucosamine/
g initial dry matter

0.086 4.70 9 data points, but appears to be a large experimen-
tal error, such that no equation will fit well.

30(a) 0–120 3.87 53.0 mg dry biomass/
g dry support

0.060 55.8 6 data points, with only 1 during the rapid growth
phase. Reasonable fit but the first data point is un-
derestimated.

30(b) 0–120 20.4 144 mg dry biomass/
g dry support

0.041 124 Good fit, but only 5 data points with only 2 in the
rapid growth phase. The linear equation would fit
reasonably to the first 4 points.

30(c) 0–120 46.1 456 mg dry biomass/
g dry support

0.034 4651 Only 6 data points, with only 2 during the rapid
growth phase. The curve appears sigmoidal but the
logistic equation does not adjust well, the devia-
tions being systematic and not random.

25 0–30 0.545 7.89 mg protein/g initial
dry matter

0.181 3.20 14 data points, well-distributed. The first two data
points are significantly underestimated.

31 0–72 0.491 12.1 protein % (w/w) 0.206 10.3 8 data points but only two during the period of ra-
pid growth, many during the stationary phase. The
logistic equation underestimates the initial biomass
significantly and does not describe the late decrease
in biomass.

32(a) 0–168 1.64 8.70 (g biomass/

g wet solid) � 10–2
0.032 0.599 8 data points, well-distributed. Good fit.

32(c) 0–120 1.34 8.57 (g biomass/

g wet solid) � 10–2
0.062 0.399 6 data points but only 2 during the rapid growth

phase. Good fit.

32(d) 0–120 1.31 8.83 (g biomass/g wet

solid) � 10–2
0.065 0.346 6 data points with only 2 during the rapid growth

phase. Good fit.

32(e) 0–120 1.33 7.70 (g biomass/g wet

solid) � 10–2
0.060 0.165 6 data points with only 2 during the rapid growth

phase. Good fit.

32(f) 0–120 1.31 8.23 (g biomass/g wet

solid) � 10–2
0.060 0.615 6 data points with only 2 during the rapid growth

phase. Good fit.

33 0–90 0.147 7.94 g dry biomass 0.081 0.123 7 data points, reasonably well distributed. Good fit.

35(e) 0–48 0.136 19.6 mg protein/g IDS 0.173 0.062 5 points, well-distributed. The logistic fit was done
by subtracting 17 from each of the biomass data po-
ints and ignoring the last two points, for which the
biomass concentration was falling (death phase?).
Without this modification none of the curves fitted.

36 0–84 0.008 0.353 mg protein 0.142 0.003 8 points, 5 of which seem to be in a final stationary
phase, with only 1 during the rapid growth period.
The logistic equation underestimates significantly
the initial point, but fits well to all the remaining
points.

38(a) 0–65 0.010 8.13 mg glucosamine/
g solid

0.198 0.495 9 data points, well-distributed. Good fit.
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Ref.
Interval of
data used

h
Xo Xm

Units for
Xo and Xm

m
h

Sum of
squares of
residuals
(SSR)

Comments

38(b) 0–65 0.131 5.72 mg glucosamine/g
solid

0.144 1.27 9 data points, well-distributed. Good fit, although
there is some scatter in the last three points.

38(d) 0–69 0.00002 1.98 mg glucosamine/g
solid

0.288 0.153 7 data points, only 1 during the rapid growth
phase. Reasonable fit, although there is scatter in
the final points.

39(a) 0–71 0.118 38.0 g dry biomass/kg
dry matter

0.220 13.0 7 data points, well-distributed. Good fit, although
the initial biomass concentration is underestimated.

39(c) 0–71 0.290 24.0 g dry biomass/kg
dry matter

0.150 4.55 8 data points, well-distributed. Good fit, although
the initial biomass concentration is underestimated.

41(a) 0–40 1.13 13.8 mg protein/g initial
wet substrate

0.208 0.202 4 data points, poorly-distributed. Good fit, although
the lack of data points during the rapid growth
phase means that it is impossible to determine the
kinetic type with confidence.

41(b) 0–40 0.005 13.6 mg protein/g initial
wet substrate

0.503 1.01 4 data points, poorly-distributed. Reasonable fit,
although the initial biomass concentration is signifi-
cantly underestimated. In addition, the lack of data
points during the rapid growth phase means that it
is impossible to determine the kinetic type with
confidence.

41(c) 0–40 0.036 12.0 mg protein/g initial
wet substrate

0.320 0.935 4 data points, poorly-distributed. Reasonable fit,
although the initial biomass concentration is signifi-
cantly underestimated. In addition, the lack of data
points during the rapid growth phase means that it
is impossible to determine the kinetic type with
confidence.

42(a) 0–1344 4.00 157 mg dry biomass 0.006 146 9 data points, well-distributed. Good fit.

43 0–31 0.001 0.237 dry biomass/g initial
dry matter

0.365 0.003 10 data points, well-distributed. Good fit.

44(a) 0–38 0.092 11.4 g protein/100 g
substrate

0.345 3.80 5 data points, only 1 during rapid growth phase.
The initial biomass concentration is underestimated.

44(b) 0–38 0.035 11.2 g protein/100 g
substrate

0.381 1.72 5 data points, only 1 during rapid growth phase.
The initial biomass concentration is underestimated.

44(c) 0–38 0.015 11.6 g protein/100 g
substrate

0.404 1.86 5 data points, only 1 during rapid growth phase.
The initial biomass concentration is underestimated.

44(d) 0–38 0.018 11.5 g protein/100 g
substrate

0.338 2.06 5 data points, only 1 during rapid growth phase.
The initial biomass concentration is underestimated.

44(e) 0–38 0.562 13.4 g protein/100 g
substrate

0.118 1.08 5 data points, well-distributed. Good fit, although
the data does not show a final leveling off.

44(h) 8–34 0.335 10.8 g protein/100 g
substrate

0.244 1.53 6 data points, only 1 during the rapid growth
phase. Reasonable fit.

44(i) 8–34 0.580 12.3 g protein/100 g
substrate

0.233 0.623 6 data points, only 1 during the rapid growth
phase. Reasonable fit.

44(j) 6–30 0.773 11.2 g protein/100 g
substrate

0.295 0.194 6 data points, only 1 during the rapid growth
phase. Reasonable fit.

44(k) 0–62 1.13 9.05 g protein/100 g
substrate

0.097 4.15 6 data points, only 1 during the rapid growth
phase. Poor fit.

44(l) 0–62 0.246 9.71 g protein/100 g
substrate

0.170 7.87 6 data points, only 1 during the rapid growth
phase. Poor fit, especially since the initial biomass is
significantly underestimated.

44(m) 0–62 1.03 12.5 g protein/100 g
substrate

0.114 3.79 6 data points, only 1 during the rapid growth
phase. Poor fit, especially since the initial biomass is
significantly underestimated.

44(n) 0–62 0.165 12.3 g protein/100 g
substrate

0.220 9.25 6 data points, only 1 during the rapid growth
phase. Poor fit, especially since the initial biomass is
significantly underestimated.

44(o) 0–62 0.134 13.4 g protein/100 g
substrate

0.245 9.66 6 data points, only 1 during the rapid growth
phase. Poor fit, especially since the initial biomass is
significantly underestimated.

44(p) 0–30 0.004 9.38 g protein/100 g
substrate

0.456 3.04 14 data points. Good fit, except for the last two
points where the biomass is decreasing.

45 5–48 2.73 125 g biomass/100 g
solids

0.209 143 10 data points, well-distributed. Good fit.
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Ref.
Interval of
data used

h
Xo Xm

Units for
Xo and Xm

m
h

Sum of
squares of
residuals
(SSR)

Comments

46(a) 0–144 0.973 28.0 g protein/100 g dry
matter

0.066 8.49 9 data points, well-distributed. Good fit.

46(b) 0–144 0.902 25.4 g protein/100 g dry
matter

0.069 7.59 9 data points, well-distributed. Good fit.

46(c) 0–144 0.673 22.9 g protein/100 g dry
matter

0.076 14.1 9 data points, well-distributed. Good fit.

46(d) 0–144 0.256 23.3 g protein/100 g
dry matter

0.105 2.72 9 data points, well-distributed. Good fit.

47(a) 8–15 2.34 49.1 mg biomass/g 0.144 6.48 4 data points. With few data points and large
scatter impossible to identify the kinetics.

47(d) 8–17 0.1 60.2 mg biomass/g 0.445 55.0 5 data points. Reasonable fit.

47(e) 8–17 0.119 75.5 mg biomass/g 0.400 71.7 5 data points. Poor fit.

48(b) 0–115 1.17

x109

1.81

x1011

cells/g 0.051 5.42

x1020

9 data points, well-distributed. Fit is adequate, but
the first 5 data points are overestimated, and the
data does not show a final leveling off.

49(b) 0–27 3.52 26.0 g dry biomass/g
dry substrate

0.157 27.5 16 points, well-distributed. The logistic equation fits
the later part of the curve well but poorly in the
initial part.

49(c) 0–27 0.681 24.5 g dry biomass/g
dry substrate

0.290 49.3 16 data points, well-distributed. Good fit, but the
initial data point is greatly underestimated.

50(a) 0–120 5.0 17.9 % (w/w) dry basis 0.061 3.62 6 data points, poorly-distributed, with only 1 du-
ring the rapid growth phase. The logistic equation
fits well, but shows only a deceleration phase.

50(b) 0–120 3.21 14.6 % (w/w) dry basis 0.130 2.77 6 data points, poorly-distributed, with only 1 du-
ring the rapid growth phase. The logistic equation
fits well, but shows only a deceleration phase.

50(c) 0–120 4.91 17.3 % (w/w) dry basis 0.055 1.06 6 data points, poorly-distributed, with only 2 du-
ring the rapid growth phase. The logistic equation
fits well, but shows only a deceleration phase.

51 3–206 0.024 8.48 mg glucosamine/g 0.072 11.8 26 data points, well-distributed. Good fit, although
the data shows significant scatter during the statio-
nary phase.

52(a) 0–120 1.32 8.11 protein % (w/w)
dry basis

0.046 0.248 6 data points, 3 during the rapid growth phase. The
logistic equation fits well, but shows only a decele-
ration phase.

52(c) 0–120 0.758 13.4 protein % (w/w)
dry basis

0.055 2.32 6 data points, 3 during the rapid growth phase.
Reasonable fit, but the first data point is underesti-
mated.

52(d) 0–120 0.700 14.7 protein % (w/w)
dry basis

0.062 1.62 6 data points, 3 during the rapid growth phase.
Reasonable fit, but the first data point is underesti-
mated.

53(a) 0–128 0.032 1.63 g/L bulk volume 0.050 0.023 7 data points, well-distributed. Good fit.

53(b) 0–118 0.072 0.891 g/L bulk volume 0.189 0.0483 Original curve was shown without the original data
points. The logistic equation fits reasonably, but
does not describe the slow decrease in biomass near
the end.

53(c) 0–118 0.0789 1.45 g/L bulk volume 0.160 0.0222 Original curve was shown without the original data
points. The logistic equation fits reasonably, but
does not describe the slow decrease in biomass near
the end.

53(d) 0–118 0.0786 1.89 g/L bulk volume 0.154 0.0596 Original curve was shown without the original data
points. The logistic equation fits reasonably, but
does not describe the slow decrease in biomass near
the end.

53(e) 0–118 0.122 2.16 g/L bulk volume 0.121 0.0325 Original curve was shown without the original data
points. Good fit, but the first data point is overesti-
mated.

54(a) 10–50 0.004 2.69 g dry biomass/
150 g koji

0.167 0.0192 10 points, reasonably well-distributed. Good fit, al-
though the data does not show a final leveling off.

54(b) 10–51 0.001 13.8 g dry biomass/
150 g koji

0.205 5.62 14 points, poorly-distributed with most in an early
slow-growth phase, only 3 in the rapid growth pha-
se. Reasonable fit, but the data does not show a fi-
nal leveling off.
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Ref.
Interval of
data used

h
Xo Xm

Units for
Xo and Xm

m
h

Sum of
squares of
residuals
(SSR)

Comments

54(c) 10–51 0.01 3.43 g dry biomass/
150 g koji

0.158 0.595 14 points, reasonably well-distributed. The logistic
equation fits reasonably although it overestimates 7
points in mid growth cycle. The data does not show
a final leveling off.

54(d) 10–51 0.0167 11.2 g dry biomass/
150 g koji

0.182 2.11 14 points, well-distributed. Good fit.

54(e) 10–51 0.00615 9.23 g dry biomass/
150 g koji

0.215 1.88 14 data points, well-distributed. Good fit.

55(a) 0–48 0.696 14.5 protein % (w/w) dry
basis

0.089 4.61 20 data points, well-distributed. This graph was
made by subtracting 10 from each data point of the
original graph (See Fig. 6). Good fit, although the
data does not show a final leveling off.

55(b) 0–48 9.85 130 protein % (w/w) dry
basis

0.018 44.3 50 data points, well-distributed. The logistic equa-
tion fits reasonably, but has relatively little curvatu-
re in the fitted region. The data does not show a fi-
nal leveling-off.

55(b) 0–48 1.06 19.5 protein % (w/w) dry
basis

0.068 40.0 50 data points. This graph was made by subtracting
10 from each data point of the original graph (See
Fig. 6). Good fit, although the data does not show a
final leveling off.

56(a) 0–69 5.40 12.0 mg protein/g initial
fresh substrate

0.703 44.3 14 data points, very poorly-distributed, with all the
points being in either the lag or stationary phase.
Poor fit, with the initial data points underestimated.

56(b) 0–69 0.026 13.0 mg protein/g initial
fresh substrate

0.349 9.00 14 data points, poorly-distributed, with only 3
during the rapid growth phase. Good fit, although
there is significant scatter in the data during the
stationary phase.

56(c) 0–69 0.648 8.89 mg protein/g initial
fresh substrate)

0.277 51.3 16 data points, relatively poorly distributed, with
most being in the initial lag phase or final statio-
nary phase. The first few data points are underesti-
mated. Large amount of scatter in the data during
the stationary phase.

56(d) 0–69 0.0003 10.4 protein/g initial
fresh substrate

0.535 21.5 16 data points, relatively poorly distributed, with
most being in the initial lag phase or final statio-
nary phase. The first few data points are underesti-
mated. Large amount of scatter in the data during
the stationary phase.

56(e) 0–69 0.158 5.92 protein/g initial
fresh substrate

0.195 15.3 19 data points, 5 during the rapid growth phase.
The logistic equation fits reasonably, although it un-
derestimates the first few data points and does not
describe the dropping off of protein concentration
near the end.

56(f) 0–69 0.002 6.20 protein/g (initial
fresh substrate)

0.477 26.4 19 data points, poorly-distributed with only 2
during the rapid growth phase. The logistic equa-
tion fits poorly, underestimating significantly the
initial data points and failing to describe the decrea-
se in protein concentration near the end.

57(a) 0–168 0.037 15.8 dry biomass % (w/w)
dry basis

0.176 9.15 12 data points, poorly-distributed with only 1 du-
ring the rapid growth phase. The logistic equation
slightly underestimates the initial data points and
does not describe the slow decrease in biomass late
in the fermentation.

57(b) 0–168 0.472 18.5 dry biomass % (w/w)
dry basis

0.109 1.79 12 data points, poorly-distributed with only 2 po-
ints in the rapid growth phase. Good fit.

58(a) 0–480 1.14 88.4 dry weight (mg/dish) 0.022 95.5 12 data points, well-distributed. Good fit, although
the biomass during the early acceleration phase is
slightly overestimated.

58(b) 0–480 0.634 87.0 dry weight (mg/dish) 0.027 455 12 data points. Reasonably-distributed, with 6
during the rapid growth phase. Reasonable fit, but
there is a slight fall off in biomass late in the growth
phase.

58(c) 0–480 0.089 93.0 dry weight (mg/dish) 0.039 405 12 data points. Poorly-distributed, with a large gap
during the rapid growth phase. Reasonable fit, but
there is a slight fall off in biomass late in the growth
phase.
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Ref.
Interval of
data used

h
Xo Xm

Units for
Xo and Xm

m
h

Sum of
squares of
residuals
(SSR)

Comments

59 0–120 3.28 207 mg dry biomass/g
dry substrate

0.121 45.2 6 data points. Poorly-distributed. Good fit.

61(a) 38–338 65.3 127 mg protein/g dry
matter

0.008 238 7 data points, poorly-distributed. The logistic
equation fits poorly, as would the other equations.

62(a) 0–146 0.001 112 cells � 107/g initial
dry matter

0.614 1609 10 data points. Poorly-distributed. Poor fit, the
initial biomass points being underestimated.

62(c) 0–140 10.3 108 cells � 107/g initial
dry matter

0.11 274 8 data points, only 3 in the rapid growth phase.
Good fit, although the first point is overestimated.

62(e) 0–132 5.50 272 cells � 107/g initial
dry matter

0.112 1673 8 data points, poorly-distributed, with a large gap
during the rapid growth phase. Good fit.

62(f) 0–110 3.79 508 cells � 107/g initial
dry matter

0.101 826 8 data points, well-distributed. Good fit.

63(a) 0–80 0.253 360 cells � 107/g initial
dry matter

0.164 194 9 data points, but only 1 during the rapid growth
period. Good fit.

63(b) 0–64 0.006 377 cells � 107/g initial
dry matter

0.396 7380 9 data points, poorly-distributed, with none during
the rapid growth phase. Good fit, but there seems
to be a large experimental error during the statio-
nary phase.

63(c) 0–64 0.021 364 cells � 107/g initial
dry matter

0.364 5231 8 data points, large gap during the rapid growth
phase. Good fit.

63(e) 0–68 0.003 338 cells � 107/g initial
dry matter

0.416 4090 9 data points, poorly-distributed, with none during
the rapid growth phase. Good fit, although there
seems to be a large experimental error during the
stationary phase.

63(g) 0–149 0.718 148 cells � 107/g initial
dry matter

0.268 1222 9 data points, poorly-distributed, with only 1
during the rapid growth phase. Good fit, but there
seems to be a large experimental error during the
stationary phase.

63(h) 0–168 2.81 319 cells � 107/g initial
dry matter

0.146 806 9 data points, poorly-distributed, with 2 during the
rapid growth phase. Good fit.

63(i) 0–168 1.06 314 cells � 107/g initial
dry matter

0.178 646 9 data points, poorly-distributed, with 2 during the
rapid growth phase. Good fit.

64(a) 23–47 0.213 10.7 g protein/100 g dry
matter

0.134 0.258 6 data points, well-distributed. The logistic
equation fits well but shows only a deceleration
phase.

64(b) 20–35 0.003 9.14 g protein/100 g dry
matter

0.388 0.265 5 data points. The logistic equation fits well but
shows only a deceleration phase.

64(c) 0–33 3.14 13.3 g protein/100 g dry
matter

0.008 2.90 6 data points, poorly distributed, with 1 data point
during the rapid growth period. The logistic equa-
tion fits poorly, as would the other equations.

64(d) 0–25 2.99 15.0 g protein/100 g dry
matter

0.067 2.43 6 data points, poorly distributed, with 1 data point
during the rapid growth period. The logistic equa-
tion fits poorly, as would the other equations.

65(e) 0–98 28.9 2300 mg glucosamine/dry
matter

0.1 32285 11 data points, well-distributed. The logistic equa-
tion fits well to the later data, but underestimates
the first 3 data points.

67 0–120 0.032 282 mg protein/g dry
solids

0.354 11356 6 data points, not well-distributed with only 1 point
in the rapid growth phase. The logistic equation
underestimates significantly the initial biomass
concentration and does not describe the fall off of
biomass in the later stages of the fermentation

71(a) 24 –120 1.79 17.8 mg glucosamine/
g dry-matter

0.047 1.07 5 data points. Good fit.

71(b) 24–120 0.494 22.0 mg glucosamine/
g dry-matter

0.494 0.075 5 data points. Good fit.

73(a) 0–160 0.127 0.162 g biomass/
g dry matter

0.003 0.0004 14 data points, well-distributed. Good fit.

73(b) 0–160 0.0001 0.122 g biomass/
g dry matter

0.399 0.0001 11 data points, poorly-distributed with only 1
during the rapid growth phase. Reasonable fit.

74 0–240 5.47 200 mg biomass/
g initial dry
substrate

0.052 1159 16 data points, well-distributed. Good fit.
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of data means that more than one of the models seems
to give an adequate description, as shown in Fig. 2.
More points would be needed in order to see whether
the deviations from the curves corresponding to the
equations were experimental error, or the actual tenden-
cies of the growth profiles. Note that some of the works
that have a reasonable number of points have only few

points taken during the rapid growth phase. Ideally, for
adequate kinetic analysis, the growth profile should
have around 10 data points, with the majority of these
located in the regions where the most rapid growth and
the acceleration and deceleration phases occur. The rea-
son for the current poor characterization of growth pro-
files is clear: in the majority of these works the growth

283G. VICCINI et al.: Analysis of Growth Kinetic Profiles in SS Fermentation, Food Technol. Biotechnol. 39 (4) 271–294 (2001)

Table 5. Kinetic analysis of literature growth profiles using the exponential equation

Ref. Interval of
data used

h

Xo

(units)
m

h
Sum of
squares

Comments

26(a) 4 – 28 1.36 � 109 cells 0.318 6.48 � 1024 7 data points, well-distributed. Good fit.

26(b) 4 – 36 2.29 � 108 cells 0.189 3.82 � 1021 9 data points, well-distributed. Reasonable
fit, although not as good as with 26(a).

34(a) 0 – 72 0.778 g protein/g dry matter 0.034 4.25 5 data points, poorly-distributed. Reasona-
ble fit but the initial point is underestima-
ted.

34(b) 0 – 72 1.182 g protein/g dry matter 0.021 0.834 4 data points, poorly-distributed. Reasona-
ble fit but the initial point is underestima-
ted.

35(g) 0 – 36 8.339 protein mg/g initial dry substrate 0.047 155 4 data points. Poor fit, but the linear or
logistic equations will not fit either.

40(b) 0 – 24 0.773 mg protein/g initial wet substrate 0.122 1.52 4 data points. Good fit.

41(d) 0 – 40 1.41 mg protein/g initial wet substrate 0.049 0.352 4 data points. Good fit.

44(f) 0 – 38.5 0.681 g protein/100 g substrate 0.064 0.332 5 data points, well-distributed. Good fit,
but the initial biomass concentration is
underestimated.

44(g) 5 – 29 1.38 g protein/100 g substrate 0.066 1.70 6 data points, well-distributed. Good fit,
but the initial biomass concentration is
underestimated.

47(a) 8 – 17 1.05 mg biomass g/g 0.201 0.236 5 data points. Very good fit.

47(b) 8 – 17 1.61 mg biomass g/g 0.187 6.88 5 data points. Good fit.

48(a) 0 – 120 2.51 � 108 cells/g 0.033 4.90 � 1018 11 points, well-distributed. Reasonable fit,
although the first 6 data points are overe-
stimated.

61(d) 66 – 159 11.1 mg total biomass/g pozzolato 0.011 11.8 4 data points. Good fit.

62(b) 0 – 68 28.7 cells � 107/g initial dry matter 0.0347 995 6 points, well-distributed. Good fit, but the
initial biomass concentration is overestima-
ted.

65(a) 0 – 78 211 mg glucosamine/g dry matter 0.0211 49771 19 data points, well-distributed. Systematic
deviations from the exponential curve,
although clearly the logistic and linear
equations will not fit.

65(c) 0 – 50 167 mg glucosamine/g dry matter 0.0235 22326 13 data points, well-distributed. Systematic
deviations from the exponential curve,
although clearly the logistic and linear
equations will not fit.

70(a) 0 – 48 0.004 mg glucosamine/g dry solids 0.141 0.025 5 data points. Reasonable fit.

Table 4. Kinetic analysis of literature growth profiles using the linear equation

Ref. Interval of
data used

h

K
biomass units per hour

Sum of
squares

Comments

35(b) 0–72 0.543 (mg protein /g initial dry solids) h–1 98.8 7 data points, well distributed. Early data
appears linear but much scatter in the last
4 points.

60 12–72 0.028 (colony forming units/g sample) h–1 0.0734 6 data points, well-distributed. Good fit.

61(e) 0–147 0.005 mg total protein/g pozzolano h–1 0.0179 7 data points. Reasonable fit, although there
appears to be scatter in the data.

61(f) 25–147 0.004 mg biomass protein/g pozzolano h–1 0.0126 6 data points. Reasonable fit, although there
appears to be scatter in the data.
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Table 6. Kinetic analysis of literature growth profiles using several equations

Ref. Parameters determined by regression

Linear

K /X-units h–1

SSR
Interval/h

Exponential

Xo

m/h–1

SSR
Interval/h

Logistic

Xo

Xm,
m/h–1

SSR
Interval/h

Two phase

XA

mL/h–1

k/h–1

SSR
Interval/h

Units used
for Xo, Xm

and XA

Comments

12 K = 0.287

SSR = 3.56
Int. = 22 – 46

Xo = 1.42
Xm = 7.99
m = 0.194
SSR = 2.25
Int. = 22 – 46

XA = 5.43
mL = 0.053
k = 0.103
SSR = 1.32
Int. = 24 – 46

mg dry bio-
mass/cm2

22 h taken as time zero due to long
lag phase. 13 data points, well-distri-
buted. The logistic equation fits well
except that it overestimates the first
point. The linear equation fits reaso-
nably to all points except the first
and last. Best overall fit with the
two-phase model.

28(c) K = 4.82

SSR = 8576
Int. = 48 – 168

Xo = 3.68
Xm = 587
m = 0.043
SSR = 6064
Int. = 48 – 168

mg dry
biomass

5 data points. Both the linear and
logistic equations fit reasonably, the
fact that there are few data points
making it impossible to decide bet-
ween them.

32(b) K = 0.046

SSR = 1.00
Int. = 0 – 168

Xo = 2.01
Xm = 11.4
m = 0.018
SSR = 1.57
Int. = 0 – 168

(g biomass/
g wet solid)

� 10–2

8 data points, well-distributed. Both
the linear and logistic equations fit
well, the logistic curve showing little
curvature.

35(a) K = 1.37

SSR = 65.3
Int. = 12 – 60

Xo = 8.46
Xm = 89.0
m = 0.064
SSR = 153
Int. = 0 – 72

mg protein/
g IDS

7 data points, reasonably-distributed.
The linear equation fits reasonably
the first and last points are removed
(lag and stationary phases). The logi-
stic equation fits reasonably, however
the first point is underestimated and
the last point overestimated.

35(c) K = 0.784

SSR = 29.1
Int. = 12 – 48

Xo = 13.8
Xm = 59.3
m = 0.053
SSR = 51.3
Int. = 0 – 72

mg protein/
mg initial
dry solids

7 data points, well distributed. The
linear equation fits well without the
initial point and the last 2 points, which
seem to represent a stationary phase.
The logistic equation fits reasonably
over the whole growth curve.

35(d) K = 0.734

SSR = 28.7
Int. = 12 – 72

Xo = 12.4
Xm = 70.2
m = 0.046
SSR = 26.3
Int. = 0 – 72

mg protein/
mg initial
dry solids

7 data points, well distributed. The
linear equation fits well without the
initial point (lag phase). The logistic
equation fits reasonably over the
whole growth curve.

35(f) K = 0.421

SSR = 17.0
Int. = 0 – 36

Xo = 15.2
m = 0.020
SSR = 8.53
Int. = 0 – 36

mg protein/
mg initial
dry solids

Only 4 data points, since the last 3
were removed because the biomass
concentration was falling. The linear
equation does not fit well. The expo-
nential equation fits better but unde-
restimates the initial and final points.

35(h) K = 0.382

SSR = 7.05
Int. = 0 – 48

Xo = 16.5
m = 0.017
SSR = 4.78
Int. = 0 – 48

mg protein/
mg initial
dry solids

5 data points. Little difference in the
goodness of fit with either the linear
or exponential equations. In the case
of the exponential equation the fitted
curve has little curvature.

37 K = 0.145

SSR = 0.1
Int. = 16 – 72

Xo = 0.490
Xm = 10.5
m = 0.642
SSR = 0.880
Int. = 16 – 172

mg dry
biomass/g
wheat bran

10 data points, well-distributed, al-
though the last 5 appear to represent
a stationary phase. The linear equa-
tion fits well to the first 6 points.
The logistic equation fits well to the
whole curve.

38(c) K = 0.053

SSR = 0.421
Int. = 0 – 69

Xo = 0.134
Xm = 3.52
m = 0.091
SSR = 0.132
Int. = 0 – 69

mg glucosa-
mine/g-solid

9 data points, reasonably well-distri-
buted. The linear equation fits reaso-
nably, although the deviations from
the line do not appear random. The
logistic equation fits well, although it
overestimates the initial biomass con-
centration.
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Ref. Parameters determined by regression

Linear

K /X-units h–1

SSR
Interval/h

Exponential

Xo

m/h–1

SSR
Interval/h

Logistic

Xo

Xm,
m/h–1

SSR
Interval/h

Two phase

XA

mL/h–1

k/h–1

SSR
Interval/h

Units used
for Xo, Xm

and XA

Comments

39(b) K = 0.535

SSR = 85.0
Int. = 0 – 73

Xo = 0.102
Xm = 1.21
m = 0.102
SSR = 38.7
Int. = 0 – 73

g dry biomass
/ kg dry
matter

8 data points, well distributed. The
logistic equation fits well. The linear
equation fits reasonably, but the de-
viations from the line are not ran-
dom.

39(c) K = 0.462

SSR = 7.51
Int. = 22– 71

Xo = 1.12
Xm = 29.2
m = 0.074
SSR = 12.4
Int. = 0 – 71

g dry biomass
/ kg dry
matter

7 data points, well-distributed. The
linear equation fits well if the first
point is removed (lag phase). The
logistic equation fits reasonably to
the whole curve.

40(a) Xo = 0.160

m = 0.420
SSR = 1.30
Int. = 0 – 24

Xo = 0.023
Xm = 23.6
m = 0.350
SSR = 4.44
Int. = 0 – 48

mg protein/
g initial wet
substrate

6 data points, only 1 during the rapid
growth phase. The exponential equa-
tion fits well until 24 h. The logistic.
equation fits reasonably to the whole
growth phase, but underestimates the
first two data points.

40(c) K = 0.358

SSR = 10.8
Int. = 0 – 36

Xo = 3.31
Xm = 18.0
m = 0.111
SSR = 6.66
Int. = 0 – 36

mg protein/
g initial wet
substrate

5 data points, well-distributed. Neit-
her equation fits particularly well,
although the logistic equation fits
better.

40(d) K = 0.483

SSR = 6.30
Int. = 0 – 36

Xo = 3.72
Xm = 24.7
m = 0.097
SSR = 3.81
Int. = 0 – 36

mg protein/
g initial wet
substrate

5 data points, well-distributed. Both
the linear and logistic equations fit
well. In the case of the logistic equa-
tion the fitted curve has little curva-
ture.

42(b) K = 0.132

SSR = 194
Int. = 0 – 720

Xo = 12.3

m = 0.003
SSR = 403
Int. = 0 – 720

Xo = 4.05
Xm = 109
m = 0.007
SSR = 59.7
Int. = 0 – 720

linear exten-
sion (mm)

7 data points, well-distributed. All
three equations fit reasonably to a
number of the points. The logistic
equation fits reasonably over the
whole growth phase.

49(a) K =1.16

SSR = 18.3
Int. = 8 – 24

Xo =1.22
Xm = 25.2
m = 0.208
SSR = 33.6
Int. = 0 – 31

g dry biomass
/ g dry sub-
strate

16 data points, well-distributed. The
logistic equation fits the later part of
the curve well, but greatly underesti-
mates the first data point. Removing
the initial and final points (lag and
stationary phases), the linear equa-
tion fits well.

52(b) K = 0.084

SSR = 2.50
Int. = 0 – 120

Xo = 2.17

m = 0.014
SSR = 3.14
Int. = 0 – 120

Xo = 1.29
Xm = 14.0
m = 0.031
SSR = 0.733
Int. = 0 – 120

protein %
(w/w) dry
basis

6 data points, well-distributed. The
logistic equation fits well, although it
underestimates the initial point and
the data does not show a leveling off.
The exponential and linear equations
fit reasonably, but not as well as the
logistic.

55(a) K = 0.239

SSR = 14.0
Int. = 0 – 48

Xo = 9.85
Xm = 98.4
m = 0.019
SSR = 8.46
Int. = 0 – 48

protein %
(w/w) dry
basis

Analysis of Fig. 6, done without sub-
traction. 20 data points. The linear
equation fits well although there ap-
pears to be an initial lag phase. The
logistic equation fits reasonably, but
there is relatively little curvature in
the fitted region. The data does not
show a final leveling off.

61(b) K= 0.307

SSR = 3.03
Int. = 58 – 200

Xo = 70.6
Xm = 129
m = 0.008
SSR = 366
Int. = 0 – 575

mg protein/
g dry matter

9 data points, poorly-distributed, with
only 2 during the rapid growth pha-
se. The logistic equation does not fit
well. Removing the initial lag phase
and final stationary phase, the linear
equation fits well to four of the points.

Table 6. Cont.
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Ref. Parameters determined by regression

Linear

K /X-units h–1

SSR
Interval/h

Exponential

Xo

m/h–1

SSR
Interval/h

Logistic

Xo

Xm,
m/h–1

SSR
Interval/h

Two phase

XA

mL/h–1

k/h–1

SSR
Interval/h

Units used
for Xo, Xm

and XA

Comments

61(c) K = 0.609

SSR = 135
Int. = 47 – 127

Xo = 41.09
m = 0.01
SSR = 712.
Int. = 47 – 127

mg protein/
g initial dry
matter

4 data points. Neither the linear nor
the exponential equation fits particu-
larly well. The lack of data points wo-
uld make it difficult to distinguish the
type of kinetics.

62(d) Xo = 3.23

m = 0.127
SSR = 295
Int. = 0 – 29

Xo = 0.1
Xm = 106
m = 0.33
SSR = 2687
Int. = 0 – 137

cells � 107/g
initial dry
matter

11 data points, but only 3 during the
rapid growth phase. The logistic
equation does not fit well, although
the exponential equation approxima-
tes the first 5 points well.

63(d) Xo = 4.98

m = 0.111
SSR = 496
Int. = 0 – 29

Xo = 0.00228
Xm = 112
m = 0.515
SSR = 887
Int. = 0 – 79

cells � 107/g
initial dry
matter

4 data points. The exponential equa-
tion fits reasonably to the early data,
but more data points would be nee-
ded to discern the kinetics with confi-
dence. The logistic equation fits rea-
sonably but does not describe the fall
off in biomass later in the growth
cycle.

63(f) Xo = 4.26

m = 0.062
SSR = 3466
Int. = 0 – 78

Xo = 0.0193
Xm = 539
m = 0.062
SSR = 3441
Int. = 0 – 95

cells � 107/g
initial dry
matter

8 data points. Poorly-distributed,
with a large gap during the rapid
growth phase. The logistic equation
fits well. The exponential equation
fits well to the first 7 points.

66(a) K = 0.021

SSR = 0.055
Int. = 0 – 96

Xo = 0.674

m = 0.017
SSR = 0.013
Int. = 0 – 72

Xo = 0.564
Xm = 2.82
m = 0.037
SSR = 0.019
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points, well-distributed. The
logistic equation fits reasonably well,
although the data does not show a fi-
nal leveling out. The linear equation
also fits reasonably well. The expo-
nential equation fits well to the first 4
points. Difficult to determine the ki-
netics with so few data points.

66(b) K = 0.022

SSR = 0.111
Int. = 0 – 96

Xo = 0.883

m = 0.012
SSR = 0.268
Int. = 0 – 96

Xo = 0.619
Xm = 2.94
m = 0.037
SSR = 0.109
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points, well-distributed. The
logistic equation fits reasonably well,
although the data does not show a fi-
nal leveling out. The linear equation
also fits reasonably well. The expo-
nential equation does not fit well. Dif-
ficult to determine the kinetics with
so few data points.

66(c) K = 0.025

SSR = 0.179
Int. = 0 – 96

Xo = 1.08

m = 0.011
SSR = 0.526
Int. = 0 – 96

Xo = 0.607
Xm = 3.01
m = 0.051
SSR = 0.002
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points, well-distributed. The
logistic equation fits better than either
the linear or the exponential. Howe-
ver, it is difficult to determine the ki-
netics with so few data points.

66(d) K = 0.031

SSR = 0.234
Int. = 0 – 96

Xo = 1.15

m = 0.012
SSR = 0.739
Int. = 0 – 96

Xo = 0.606
Xm = 3.53
m = 0.053
SSR = 0.056
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The logistic and linear
equations fit reasonably, the exponen-
tial fits poorly. Difficult to determine
the kinetics with so few data points.

66(e) K = 0.018

SSR = 0.079
Int. = 0 – 96

Xo = 0.589
m = 0.014
SSR = 0.020
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The exponential equa-
tion fits well, the linear fits poorly.
Difficult to determine the kinetics
with so few data points.

66(f) K = 0.020

SSR = 0.089
Int. = 0 – 96

Xo = 0.612
m = 0.015
SSR = 0.019
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The exponential equa-
tion fits well, the linear fits poorly.

Table 6. Cont.
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Ref. Parameters determined by regression

Linear

K /X-units h–1

SSR
Interval/h

Exponential

Xo

m/h–1

SSR
Interval/h

Logistic

Xo

Xm,
m/h–1

SSR
Interval/h

Two phase

XA

mL/h–1

k/h–1

SSR
Interval/h

Units used
for Xo, Xm

and XA

Comments

66(g) K = 0.022

SSR = 0.124
Int. = 0 – 96

Xo = 0.601
m = 0.016
SSR = 0.009
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The exponential equa-
tion fits well, the linear fits poorly.

66(h) K = 0.023

SSR = 0.123
Int. = 0 – 96

Xo = 0.619
m = 0.016
SSR = 0.006
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The exponential equa-
tion fits well, the linear fits poorly.

66(i) K = 0.024

SSR = 0.069
Int. = 0 – 96

Xo = 0.689
m = 0.015
SSR = 0.050
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. The exponential equa-
tion fits well, the linear fits poorly.

66(j) K = 0.027

SSR = 0.091
Int. = 0 – 96

Xo = 0.733

m = 0.015
SSR = 0.084
Int. = 0 – 96

Xo = 0.586
Xm = 4.87
m = 0.027
SSR = 0.023
Int. = 0 – 96

mg glucosa-
mine/g wet
solids

5 data points. All three equations fit
reasonably well. Difficult to determi-
ne the kinetics with so few data po-
ints.

70(b) Xo = 0.361

m = 0.071
SSR = 6.63
Int. = 0 – 48

Xo = 0.0002
Xm = 10.6
m = 0.314
SSR = 0.017
Int. = 0 – 48

mg glucosa-
mine /g dry
solids

5 data points. The logistic equation
fits well, the exponential not.

70(c) Xo = 0.400

m = 0.075
SSR = 8.03
Int. = 0 – 48

Xo = 0.002
Xm = 15.1
m = 0.256
SSR = 0.001
Int. = 0 – 48

mg glucosa-
mine /g dry
solids

5 data points. The logistic equation
fits well, the exponential not.

72(a) K = 0.101

SSR = 0.516
Int. = 20 – 48

Xo = 0.053

m = 0.084
SSR = 0.206
Int. = 20 – 48

Xo = 0.007
Xm = 4.12
m = 0.152
SSR = 0.078
Int. = 20 – 48

mg bio-

mass/ g-koj

7 data points, well-distributed. The
logistic equation fits best. The expo-
nential fits reasonably and the linear
fits poorly.

72(b) K = 0.216

SSR = 1.53
Int. = 20 – 48

Xo = 0.119

m = 0.082
SSR = 2.25
Int. = 20 – 48

Xo = 0.001
Xm = 5.84
m = 0.249
SSR = 0.039
Int. = 20 – 48

mg bio-
mass/g-koj

7 data points, well-distributed. The
logistic equation fits best. The expo-
nential and linear fit poorly.

72(c) K = 0.310

SSR = 3.69
Int. = 20 – 48

Xo = 0.109

m = 0.092
SSR = 2.63
Int. = 20 – 48

Xo = 0.002
Xm = 9.30
m = 0.217
SSR = 0.039
Int. = 20 – 48

mg bio-
mass/g-koj

7 data points, well-distributed. The
logistic equation fits best. The expo-
nential and linear fit poorly.

18 Xo = 0.387
Xm = 5.06
m = 0.099
SSR = 1.46
Int. = 0 – 60

XA =1.305
mL = 0.069
k = 0.044
SSR = 0.626
Int. = 12 – 60

mg dry bio-
mass/cm2

13 data points, well-distributed. The
logistic equation overestimates the
early biomass concentrations. The
two-phase model fits well after 12 h.

68(a) K = 0.007

SSR = 0.569
Int. = 0 – 168

XA = 2.77
mL = 0.014
k = 0.034
SSR = 0.180
Int. = 0 – 168

protein con-
tent % (w/w)
dry basis

8 data points but poorly-distributed
with none in the period of most ra-
pid growth. The linear equation does
not fit well. The two phase equation
adjusts well, although there is a lot of
scatter in the data.

68(b) K = 0.013

SSR = 0.069
Int. = 24 – 168

XA = 2.87
mL = 0.030
k = 0.036
SSR = 0.575
Int. = 0 – 168

protein con-
tent % (w/w)
dry basis

8 data points but poorly-distributed.
The two phase equation fits reaso-
nably, although there are systematic
deviations from the curve. The linear
equation fits well to the last 7 data
points.
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profile is presented without any kinetic analysis, and
therefore it is obvious that a good kinetic analysis was
not part of the initial motivation for the work.

Typical fits with the logistic, linear and exponential
equations, obtained from analyses of those graphs that
contain a reasonable number of points that are well-dis-
tributed in time, are shown in Fig. 3. Table 3 shows that
in the majority of cases the logistic equation gives an ad-
equate, although not perfect, fit. Some problems with
the fit of the logistic equation can be identified. Firstly,
in some cases the logistic equation fits well to the data
collected in the middle and latter stages of the fermenta-
tion, but clearly overestimates the initial biomass con-
centration (Fig. 4). This problem arises because the logis-
tic equation is symmetrical around the inflection point
at X = 0.5Xm: if the part of the curve before the inflection
point is rotated 180 degrees it will lie directly on top of
the part of the curve after this point. The equation will
therefore not adjust well to growth profiles in which the
initial acceleration phase and later deceleration phase
are not symmetrical by rotation, which occurs when
there is a short initial acceleration period followed by a
long period during which the growth slowly decelera-
tes. Fig. 4 shows that the two phase model of Ikasari
and Mitchell (22) can fit well to such profiles, however,
in practice it is problematic to fit the both phases. The
early exponential phase is typically quite short and oc-
curs at a time when the biomass is below the level of
sensitivity of the measurement method, meaning that
few data points are collected and those data points that

are collected typically have large relative errors in them.
Therefore it is virtually impossible to obtain a reliable fit
of the early exponential phase, and therefore impossible
to obtain a reasonable estimate of m to insert into the
equation for the deceleration phase. This problem was
apparent in the various profiles analyzed in the present
work, and therefore no attempt was made to fit the ex-
ponential equation to the first phase. In fitting the sec-
ond phase the parameters m and L were estimated as a
single lumped parameter, mL, which represents the spe-
cific growth rate at the instant that the deceleration
phase begins. Secondly, the logistic equation describes
an asymptotic approach of the biomass concentration to
Xm, such that the growth profile appears flat in the later
stages of the fermentation. However, in some cases,
even though the logistic equation describes the data ade-
quately, the biomass or measured component decreases
steadily during the later stages of the fermentation pre-
sumably due either to death and autolysis of the bio-
mass or endogenous maintenance metabolism (Fig. 5).

The analyses of the data of Durand and Chereau
(55) raise two important points about analyses of kinet-
ics when growth is estimated indirectly by a biomass
component that is also present in the substrate (Fig. 6).
They used protein as an indirect indicator of growth,
and the logistic equation does not adjust well to the raw
data, the fit giving a maximum protein content (Xm) of
almost 100 % of the dry weight of the sample (Table 6),
which is clearly impossible, since the protein will consti-
tute only around 50 % of the dry weight of the biomass.
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Ref. Parameters determined by regression

Linear

K /X-units h–1

SSR
Interval/h

Exponential

Xo

m/h–1

SSR
Interval/h

Logistic

Xo

Xm,
m/h–1

SSR
Interval/h

Two phase

XA

mL/h–1

k/h–1

SSR
Interval/h

Units used
for Xo, Xm

and XA

Comments

68(c) K = 0.026

SSR = 0.076
Int. = 0 – 168

XA = 3.19
mL = 0.015
k = 0.014
SSR = 0.934
Int. = 0 – 168

protein con-
tent % (w/w)
dry basis

8 data points, reasonably well distri-
buted. The two phase equation fits
well. The linear equation fits well to
the last 7 data points.

69(a) K = 2.73

SSR = 72.8
Int. = 23 – 41

Xo = 0.001
Xm = 34.2
m = 0.387
SSR = 2619
Int. = 0 – 100

mg biomass
/g dry solids

26 data points, well-distributed, but a
very significant death phase occupies
half the fermentation. The logistic
equation fits poorly. The linear equa-
tion fits well the rapid growth phase,
which has 14 points.

69(b) K = 3.91

SSR = 9.11
Int. = 23 – 31

Xo = 1.77 � 10–7

Xm = 30.0
m = 0.798
SSR = 1051
Int. = 0 – 100

mg biomass
/g dry solids

27 data points, well distributed, but a
very significant death phase occupies
half the fermentation. The logistic
equation fits poorly. The linear equa-
tion fits well the rapid growth phase,
which has 6 points.

75 K = 0.0003

SSR = 1.8 � 10–6

Int. = 8 – 33

Xo = 0.0008
Xm = 0.008
m = 0.166

SSR = 2.4 � 10–5

Int. = 8 – 136

g biomass /
g initial
substrate

13 points. The logistic equation fits
reasonably, although it does not des-
cribe the decrease in biomass later in
the growth phase. The linear equa-
tion fits well to the 6 data points in
the rapid growth phase.
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However, the substrate contained protein even before it
was inoculated, and since this protein is not biomass
protein it should not be included in the estimate of the
initial biomass concentration. The authors did not pro-
vide a measurement of the protein content of the unin-
oculated substrate, so an arbitrary value of 10 % (w/w)
dry basis was assumed, since their zero time data point
was 10.84 % (w/w) dry basis. This value of 10 was sub-
tracted from all the data points. In this case the fit of the
logistic model was much better, giving a more reason-
able value for Xm of 14.5 % (w/w) dry basis. However,

there is a further concern. Presumably the fungus was
able to metabolize the protein in the substrate, and
therefore the shape of the protein profile against time is
the result of two opposing processes: the consumption
of substrate protein and the production of biomass pro-
tein. From a simple curve of total protein versus time, it
is not possible to say what the contribution of these op-
posing processes is, and therefore it is not possible to
use these data to determine the growth kinetics in them-
selves. Therefore, although an empirical equation can be
fitted to the data, it is not necessarily the growth itself
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that is being analyzed. Great care must therefore be
taken in interpreting kinetic data when the indicator of
the biomass is also present in the substrate and is poten-
tially consumed during the fermentation.

It is clear that, given the complexity of different SSF
systems, consisting of different microorganisms and
substrates, and in which the limiting phenomena are
different, no one empirical equation will ever be able to
describe all the growth profiles well. Therefore the re-
searcher must choose one empirical equation from
amongst several possibilities. Obviously the equation to
be chosen is that which most adequately describes the
data. Since the equations are all empirical, there is no
theoretical basis for preferring one over the other.

The logistic equation does give an adequate fit for a
large proportion of the available growth profiles. If it
adjusts well to the whole growth profile, which occurs
in a reasonable number of cases, then it brings the
added advantage of simplicity, since a single equation is
used, whereas for the linear and exponential models the
lag, growth and stationary phases will require different
equations (typically dX/dt = 0), and the two phase
model also requires more than one equation to describe
the whole growth cycle.

Future Needs in Kinetic Modeling for SSF
Bioreactor Models

The current attempt to analyze growth kinetics in
SSF systematically has highlighted several issues that
need to be resolved in the future in order to improve
the performance of the kinetic submodels of bioreactor
models. These are discussed below.

Inclusion of the effects of variations in environmental
parameters on growth

The above kinetic analyses represent situations in
which the environmental conditions are relatively con-
stant during the whole growth phase. However, typi-
cally within SSF bioreactors it is almost impossible to
avoid significant variations in key environmental vari-
ables (4). If a mathematical model is to describe biorea-
ctor performance successfully, then the kinetic submodel
must describe how the growth kinetics of the microor-
ganism vary with these variations in the environmental
variables. The environmental variables for which it is
most desirable to incorporate the effects are the temper-
ature and the water activity of the substrate, since it is
possible to influence these two variables in the manner
in which the bioreactor is operated. A bioreactor model
in which the growth kinetic model described the influ-
ence of these variables would be a useful tool in opti-
mizing the operation of the bioreactor (4).

Currently, the typical manner in which the effects of
these environmental variables are incorporated into the
growth kinetic equations is to express the parameters of
the kinetic equations not as constants, but rather as
functions of the environmental variables. The equations
and their parameters are typically determined in what
can be called »constant-condition« experiments. For ex-
ample, in the use of this approach to determine the ef-
fect of temperature, the growth kinetic analysis is repea-
ted by incubating the cultures within various constant
temperature incubators covering the temperature range
over which it is desired to know the effect of tempera-
ture. Small substrate masses are used to ensure that the
temperature within the substrate bed remains at the
temperature of the incubator throughout the entire
growth cycle. The empirical growth equation is fitted to
each growth profile. For example, in the case of the lo-
gistic equation, such a strategy gives a range of m values
corresponding to different temperatures and a range of
Xm values corresponding to different temperatures. Em-
pirical equations are then used to describe the relation
between each growth parameter and the temperature.
This approach has been used in the establishment of
bioreactor models by various workers. For example, in
applying this approach using the logistic equation, Sau-
cedo Castaneda et al. (76) arrived at the following equa-
tions for two parameters of the equation:
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and

Xm = Bo + B1T + B2T
2

+ B3T
3

+ B4T
4

/10/

where R is the universal gas constant and the various A
and B symbols with subscripts represent the parameters
that are adjusted in order to fit the equation to the data.

In the way that these equations were used in the
dynamic model of bioreactor operation, at any instant
the value of the parameter depended only on the tem-
perature at that instant. This makes sense for the specific
growth rate constant (m), but the logic of this approach
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is not so clear in the case of the maximum biomass Xm.
If the final temperature returns to the optimum temper-
ature for growth, then the model predicts that the bio-
mass will reach the optimum value for Xm and therefore
the variations in Xm with temperature during the fer-
mentation simply serve to modify the instantaneous
growth rate (described by equation /3/).

A similar approach can be used to determine the ef-
fect of water activity on the parameters of the kinetic
equation, incubating a range of cultures in controlled
humidity atmospheres. In fact these types of studies of
the effect of temperature and water activity (or water
content) on the growth rate have often been undertaken
from in food microbiology studies, in an attempt to un-
derstand the effects of these environmental variables on
food spoilage. Unfortunately, in the case of fungi it is
the colony radial growth rate that is plotted against the
environmental variable. Such data do not necessarily re-
flect the overall growth rate in the situation in SSF, in
which the inoculum is spread across the whole surface,
and the microcolonies that arise very quickly cover the
whole substrate surface, such that the majority of the
growth phase involves an increase in density of biomass
within an area already colonized. In comparison, in ex-
periments for the measurement of colony radial growth
rates, the edge of the colony expands into an uncoloni-
zed medium.

The constant-condition approach to determining
and modeling growth kinetics has the assumption, often
not stated explicitly by the authors, that the growth de-
pends solely on the current conditions and is not af-
fected by the past history of the organism. Such a situa-
tion seems unlikely. For example, consider an organism
that grows optimally at 37 °C and for which growth is
deleteriously affected at 50 °C. It seems logical that if
the organism were incubated initially at 37 °C and then
shifted to 50 °C, the growth rate would be different
from the growth rate of a culture incubated at 50 °C
from the start of the fermentation, at least for several
hours. Further, when the culture was returned to 37 °C,
it seems logical that deleterious effects suffered during
the time at 50 °C would prevent the organism from im-
mediately resuming its optimal growth rate. In fact,
such a situation was mimicked by Ikasari et al. (18), who
transferred cultures from a 37 °C incubator to a 50 °C
incubator for 10 hours and then returned the culture to
37 °C. On returning to 37 °C from 50 °C the culture took
20 hours to resume the growth rate shown by the cul-
ture held at 37 °C throughout the whole growth cycle.

The mathematical description of the effects of tem-
poral changes in temperature and water activity on the
growth rate has not received any attention in the SSF lit-
erature. An insight into how such a model might be de-
veloped can be obtained from studies that have been
made in the area of food microbiology. Bovill et al. (77)
used a model in which the physiological state of the cell
was represented by a variable Q, which varied accord-
ing to the following equation:

dQ

dt
Q= m /11/

where m is a function that depends on the environmen-
tal conditions. Growth is then given by:
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Such an approach enables the history of environ-
mental conditions to affect the current growth rate, since
the history will affect the value of Q/(1+Q). The growth
rate also depends on the current environmental condi-
tions through the parameter m.

This model describes non-lethal effects of unfavor-
able conditions. It would also be desirable to model
death kinetics, although this has received little attention
to date in SSF, with workers usually preferring to de-
scribe overall biomass profiles rather than to distinguish
between living and dead cells. Part of the difficulty is
that many SSF processes involve filamentous fungi, for
which it is much more difficult to study death kinetics
than is the case for unicellular organisms, with which
total and viable counts can be used to distinguish dead
and living cells.

Accounting for the changing biomass composition
when indirect measurements are used

The biomass is a key variable in fermentation stud-
ies, since typically metabolic activities such as substrate
consumption and product formation are strongly related
to either or both of the growth rate and the actual bio-
mass present. However, as mentioned previously, it is
very often necessary to use indirect methods of deter-
mining biomass in SSF, such as the measurement of cell
components, this being especially true for those proces-
ses involving fungi.

Unfortunately, the composition of the biomass typi-
cally varies during the fermentation. At present the only
method available to take this into account is to deter-
mine the variations as a function of time in an artificial
system that allows biomass determination, such as mem-
brane filter culture, and to presume that the same varia-
tion occurs in the real system. Such an approach was
taken in use of glucosamine to determine biomass by
Nagel et al. (10) who arrived at the following equation
for the glucosamine content of the biomass (Gx, mg-glu-
cosamine mg-dry-biomass–1 as a function of time:
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where l is the lag time (h).

Such a strategy allows glucosamine measurements
to be converted into biomass measurements, however,
the question remains as to whether the temporal varia-
tions in composition in the artificial and real systems are
the same. The more closely the growth conditions pro-
vided by the artificial system mimic those experienced
in the real system, the more likely this is to be the case,
but it is never possible to be completely certain.

In the future it might be possible to develop struc-
tured growth models that explicitly describe the mea-
sured component as one of the variables, although this
will require detailed knowledge about the various fac-
tors that control the cell composition.
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Conclusions

Empirical models still have an important place
within mathematical models of SSF bioreactors, although
until now relatively little systematic effort has been
made to analyze the kinetics even empirically. The anal-
yses done here show that the logistic equation gives the
most adequate fit in the majority of cases, but it obvi-
ously cannot be simply regarded as the universal equa-
tion of solid-state fermentation.

This review shows that, if it is intended to charac-
terize growth kinetics for the purpose of modeling bio-
reactors, then more care needs to be taken in the experi-
mental design, to ensure that sufficient samples are
removed, and that they are distributed well enough to
characterize the various phases of the growth curve.

There are still many areas in which further work is
needed in order to make these empirical growth models
truly useful within bioreactor models. More work needs
to be done to understand how best to convert indirect
measurements into estimates of the biomass, and more
work needs to be done to characterize the effect of vary-
ing environmental conditions on the growth kinetics.

Symbols

Note that the symbol X may potentially be expres-
sed in different units, depending on how the experiment
was done. The units used for X affect the units of vari-
ous other parameters. In this symbol list the units of X
are taken as mg dry biomass/(mg initial dry substra-
te.h), and the units of the other parameters are written
to be consistent with this. In the case that other units are
to be used for X, the units of various other parameters
must also be changed to maintain consistency.

K linear growth rate (mg dry biomass/(mg initial
dry substrate.h))

k first order decay constant in the second phase of
the two phase model (h–1)

L the fraction of hyphal tips surviving the entry into
the second phase in the two phase model
(dimensionless)

t time (h)

ta the time at which there is a switch from the first
to the second phase in the two phase model (h)

X biomass concentration (mg dry biomass/mg initial
dry substrate)

Xo initial biomass concentration (mg dry biomass/mg
initial dry substrate)

Xm maximum possible biomass concentration (mg dry
biomass/mg initial dry substrate)

m specific growth rate constant (h–1)
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Analiza profila kinetike rasta pri fermentaciji

na suhoj podlozi

Sa`etak

Matemati~ki modeli {to se danas predla`u pri opisu procesa u bioreaktorima, u koji-
ma se provodi fermentacija na suhoj podlozi, koriste jednostavne empirijske jednad`be za
kinetiku rasta. Me|utim, do sada nije bila provedena sistematska analiza profila rasta u
sustavima fermentacije na suhoj podlozi. U radu su razne empirijske jednad`be, uklju-
~uju}i linearne, eksponencijalne i logisti~ke, bile prilago|ene profilima dobivenim iz litera-
ture. Logisti~ka jednad`ba uglavnom daje adekvatan opis cijeloga profila rasta. U mnogi-
ma opis nije potpun jer dolazi do sistematskih devijacija od logisti~ke krivulje koja bi naj-
bolje odgovarala. Prema prilago|enoj krivulji osobito se smanjuje koncentracija biomase u
kasnijim stadijima fermentacije, a podcijenjena je ili precijenjena koncentracija po~etne bio-
mase. Iako se logisti~ka krivulja op}enito koristi u matemati~kim modelima rada bioreak-
tora, ne mo`e poslu`iti kao univerzalno primjenjiva jednad`ba u sustavima fermentacije
na suhoj podlozi. Utvr|ena su i razmatrana razli~ita pobolj{anja potrebna da bi se empirij-
ske jednad`be rasta u cijelosti mogle primijeniti.
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