Synergy of Microtechnology and Biotechnology: Microreactors as an Effective Tool for Biotransformation Processes

Anita Šalić and Bruno Zelić*
University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
Received: 19 January 2018
Accepted: 4 September 2018

SUMMARY

Despite the fact that microreactors have been present for more than 40 years now and that their potential has been extensively exploited in chemical synthesis, analytics and screening, to date very few biocatalytic processes have been explored in microreactors. It is claimed that enzymatic microreactor technology is exactly in the same place where chemical microreactors were 15 years ago. But the general opinion is that the efforts devoted to the research of micro-enzymatic reactors will inaugurate a new breakthrough in bio-based processing. The aim of this review is to explore the synergy between microtechnology, meanly microreactors, and biotechnology and to scope to its potential, opportunities, challenges and the future application of technology in biotechnology.

Key words: microreactor, biotechnology, enzyme, immobilization, biocatalysis

*Corresponding author: Phone: + 385 (0)1 4597 104; + 385 (0)1 4597 281; Fax: + 385 (0)1 4597 133; E-mail: bzelic@fkit.hr

ORCID IDs: 0000-0002-4808-363X (Šalić), 0000-0003-3210-2960 (Zelić)

†This paper was presented at European Biotechnology Congress 25-27 May 2017, Dubrovnik, Croatia
INTRODUCTION

One of the leading researchers in the field of microreactor technology, Volker Hessel (1), said: "Innovations are fragile. What is called first vision easily turns to an illusion. Illusions have the moment of disorientation. That leads to disillusion. The fate of not overcoming that is clear. Frustration comes if high promises turn into dissatisfaction. If surviving, the status of an innovation has been reached." The first vision, the first fragile innovation of the microreactor technology emerged some 40 years ago (in 1977) and it took nearly two decades for the innovation "to survive". Usually the mid-1990s are considered the beginning of the era of microreactor technology (2,3), which has been growing almost exponentially ever since then. Although many will agree that this is a new technology, especially in comparison to traditional technologies like batch, tubular reactor systems, etc., some might raise a justified question: Is the idea behind microreactor really a new one? A cursory glance at nature, at nutrient transport in leaves, oxygen/carbon dioxide exchange in million alveoli, the capillary system in the body, etc. will reveal that "microreactors" have been present all around us for millions of years now. And if nature always finds the best way, how come that it took so many years for this idea/concept/technology to find its application in everyday science/production?

According to Whitesides (4), a new technology needs 10-20 years to develop, amounting to the costs as high as $100+ MM. The underlying reason behind this is probably hidden in the general definition of microreactor technology "Micoreactors are defined as miniaturized reaction systems fabricated by using, at least partially, methods of microtechnology and precision engineering" (5). Microtechnology and precision engineering, at the base of this technology, are the methods that became generally available in the mid-1990s. They finally allowed the development of reactor systems with small internal dimensions or diameters (on a scale from 10 to 500 μm) etched into a solid support.

From a retrospective point of view, a microreactor technology as an innovation has obviously survived, simply by meeting the rule of thumb needs of a new technology "Being a new technology that has to fit into an existing laboratory set-up, it is essential that lab-on-chip equipment is compatible with the pre-existing robotics and automation lay-out of the lab." (1). Nowadays microreactors have a strong presence in science and some industries, which raises the following questions: Does something that had a bumpy start in the first 20 years, a revival in 20 years after that, may have a bright future in the forthcoming 20 years? Is microreactor technology currently as its peak or does it still have a great potential for growth? In line with the publications (6), patents (more precisely, according to European Patent Office (EPO)
Worldwide Patent Statistical Database (7), approximately 1639 patents concerns microreactors) and industry development, a simple answer would be “Yes, it does.”.

On the contrary, in the context of microreactor technology one should always have in mind that a majority of research studies, patents and the progress achieved, from those early days until today, make a reference to chemical microreactors which, according to Jensen (8), have matured and come of age. In contrast, only a small percentage accounts for microreactors used in other areas. Biotechnology is still one of the underexplored areas (from the microreactors’ point of view). So far, only a few enzymes have been applied in the microreactor-based process development and only a few patents (13 patents associated with microbioreactors according to the EPO (7) or a merely 0.79% of the total number of microreactor patents) describing such reactors have been reported. It all of this indicates that this area is in its initial phase (1). The question this paper will try to address is as follows: “Is biotechnology the next area of expansion and the future of microreactor technology?”.

MICROREACTORS – A SHORT OVERVIEW

As above-mentioned, microreactors utilize small internal dimensions or diameters (on a scale from 10 to 500 μm) to manipulate and control fluids in a controlled environment (9). They can be divided into two classes: chip-type microreactors and microcapillary microreactors. The chip-types microreactors are most often used because they offer several advantages in comparison to the microcapillary type microreactors such as easy control and integration of multiple processes into a single reactor system (10). Microreactors could be produced from different materials such as glass, quartz, silicon, metals and polymers. The selection of the optimal material depends on its chemical compatibility with the reaction mixture, the costs and the analytical methods used in process monitoring and control. Glass is the most commonly used material since it is chemically inert and transparent allowing its users visual observation of microchannels (11,12). Microchannels are produced by different methods, including: powder blasting, wet etching, laser drilling, dispensing, photolithography, etc. (13,14). According to the production methods, different types of surface roughness can be achieved in the microchannel. Surface roughness of the channel walls is speculated to be one of the most important factors because a reduction in the channel dimension increases the impact of roughness on the reaction. The average channel roughness is usually between 0.8 and 2.5 μm, depending on the selected microchannel manufacturing process.

The most common and the simplest microchannel type is the so-called tubular microchannel: a simple, straight or curved tube etched onto a microchip. In order to enhance mixing and
separation, different structures can be incorporated as a part of the microchannel: micromixers (i.e. tear drop or swirl (15,16)), zig-zag flow obstacles (17), nozzle injections, etc. By simple manipulation of inlet design, it is possible to obtain different flow patterns in a microchannel. The most common inlet designs are Y-, T- and ψ- (Fig.1).

Microchannel is a basic structure of a microreactor system with some additional parts needed for its functionality. One of them is solid base material on which microchannel is positioned (microchannel and base together form a chip) and connecting fluid lines that, together with chip, form a microreactor unit (Fig. 1).

Figure 1

Biochemical processes and biotechnology itself are usually never simple. The utilization of multiple enzymes, parallel reactions, product separation, etc. requires more complex devices. A combination of different processes in a single micro-chip is one of the current research aims in the field of microtechnology. Such devices, the so-called micro-total-analysis-systems (μ-TAS), could perform integrated sampling, sample preparation, detection and data processing in a single chip. The most common use of μ-TAS is in research in the biomedical field (i.e. DNA analysis and proteomics) (12).

Why are microreactors a good choice? There are many benefits offered by simply shrinking the reactor size. On a smaller scale a lot of new physical phenomena can be observed and utilized as a positive trigger for many reactions. The most characteristic properties of microreactors can be divided into the following groups (5,18):

Fast mixing and mass transfer. Any reduction in microchannel dimensions reduces diffusion limitations of the enzyme and substrates, and mixing takes place by molecular diffusion. Therefore, a concentration gradient can be avoided. This is especially important for the reaction systems in which active site of the enzyme and the substrate are very distant. Exploiting the benefits of reduced microchannel size, limitations of the effective reaction rate can be achieved (19). Also, microreactors can be used for the enzyme kinetic characterization and molecule screenings (20). Kinetics is especially important for the development of the enzyme-catalyzed reactions in large-scale productions as well as in the use of microreactors. The knowledge of enzyme kinetics is essential in order to find the optimal process conditions and facilitate identification of the most effective mode of process operation (21). Tadepalli et al. (22) claim that an estimation of kinetics of fast reactions in a microreactor would give more precise results because the mass transfer effects prevail over intrinsic kinetics in fast reactions.
performed in a macroscopic reactor. For that reason, mass transfer limitations that impede the true kinetics pose a problem that can be solved in a microreactor (23). The same effect is noticed in two-phase systems in which the phases are immiscible, i.e. organic-water system, in which the kinetic measurements performed in a cuvette (a traditional approach to kinetic parameter estimation) are strongly influenced by insufficient mixing due to its geometry and the properties of different phases constituting the two-phase system. Consequently, for kinetic measurements performed in a cuvette the kinetic measurements in the organic-water system result in the estimation of apparent kinetic parameters. Similarly to fast reactions, the use of microreactors for kinetic measurements of the two-phase systems is the best way how to estimate the true kinetic rates (23).

High surface-to-volume ratio. Specific surfaces of the microchannel (from 10,000 to 50,000 m²/m³) are significantly higher than those of traditional macro reactor systems (usually around 100 m²/m³ and 1000 m²/m³) (5) which as a consequence have a great effect on mass, momentum and energy transfer in the system. In biotechnology, beside influence on mass transfer and its benefits explained previously, this is important for reactions performed by enzymes whose activity depends on the temperature. Due to high surface-to-volume ratio, heat transfer is very efficient making it possible to regulate reaction temperatures in the system by very effective heat removal (24).

Laminar flow. This type of flow (a flow with low Reynolds numbers) favors control and modelling of a reaction. Since modelling of biotransformations is usually complex, the assumption of laminar flow as a base for model development can make the whole process much simpler. The laminar flow also provides high surface-to-volume ratio and interface areas, which is especially important for multiphase systems, whereas the laminar flow regime can result in diffusion-controlled reactions of compounds at the interface of two fluid streams (25). Additionally, it helps to eliminate any back-mixing in the system that may be caused by fluid turbulence (9).

Small substrate volume. When working with small reactor volumes, significant cost savings can be made in terms of the amount of substrates or biocatalysts used and needed for the reaction. This is particularly important in reactions in which purified or multiple enzymes are used as a biocatalyst since the price of enzymes can be extremely high. Microreactors also allow high repeatability of biocatalytic processes (20) so a lot of information about the process can be gathered with relatively small inlet volumes (26,27) that is rarely a case for traditional reactor systems.
Environmentally friendly. As a follow-up of the above-mentioned advantage, if there is a small inlet of substrates, there has to be a small outlet of products and by-products. And if combined with high productivity and conversion rates in microreactors, this system generates a reduction in the waste stream and the total amount of waste which makes it environmentally friendly. Additionally, as mentioned previously, due to the microchannel high surface-to-volume ratio, heat transfer is very efficient leading to extremely small energy consumption per unit temperature rise, resulting in environmental benefits (28).

Safe reaction conditions. Microreactors are considered safer than traditional reactors for reactions performed under extreme or dangerous conditions like high pressures, explosive or reactive reactants, high temperatures, etc. due to small volumes, extensive heat transfer and versatility of materials used for their production that can be easily adapted to any conditions (29-31). In contrast, the reactions performed in the field of biotechnology are mostly performed under mild pH, temperature and pressure conditions, which does not represent a crucial advantage of microreactors but, as above-mentioned, if needed, microreactors can be easily adapted.

Selectivity. The literature suggests that many biological and chemical reactions improve three very important principles when the processes are performed in microreactors in comparison to traditional production practice: reactivity, productivity and selectivity (32). Namely, the reactions performed in microreactors generally result in purer products for shorter residence time in comparison to equivalent reactions performed in traditional systems. It is because in reactions in which multiple products can be generated from a given set of reagents, depending on the local reaction conditions, the reaction can be shifted in a desirable direction. Since the use of microreactors, in comparison to conventional reactors, facilitates easy changes of reaction conditions, such as temperature or residence-time, individual compounds among the multiple compounds can be produced with high degrees of precision (33).

Rapid reactions. Although researcher working in the field of microtechnology will often highlight that the reactions in microreactors are faster and generate higher space-time yields/productivities (34,35) some other researches challenge this statement. Elvira et al. (9) claim that there are a few fundamental things limiting the ability to make a direct comparison between the micro and the macro system regarding their reaction speed. Bulk reactions are often performed with more time than would be necessary to reach the equilibrium point of the reaction in order to ensure that the desired reaction has reached its completion. Microreactors, on the other hand, are more easily optimized and closely monitored to avoid running for any
longer than is necessary to reach the reaction endpoint, and are accordingly reported to have
greater space-time yields/productivity than bulk reactors (35). Thus, even if the rate of rate-
limited reactions is unchanged, microfluidic reactors will allow more efficient and consequently
more rapid processes. On the contrary, the rate of mass-limited reactions will be increased for
small characteristic dimensions of microreactors due to the significance the diffusive effects
have in this domain, and consequently will have the same or greater effect of increasing
process speeds (36).

Numbering-up. Numbering-up or scale-out is probably one of the major microreactors benefits
and a topic of in-depth industrial analysis performed for process intensification (37). Like a
LEGO system, complex but compact microfactories can be constructed simply by connecting
microreactors to operate in parallel or in a series (38,39). Uninterrupted continuous operation
is the second of the biggest advantages of numbering-up, because if one of the units is broken,
it can be easily replaced without affecting other units. Also, complete pathway from
development to production, passing all necessary steps like development time, testing and
turnaround is quite shorter than in the traditional scale-up (12). Yet another advantage comes
from the fact that by using multiple reactors of the same size, the chemistry performed in each
one remains the same at any level of scaling out (40). This approach allows easy transfer
between research and industrial applications as well (41).

BIOTECHNOLOGY ON A SMALL SCALE
As above-mentioned in the introduction, to date very few enzymes have been applied to the
microreactor-based process development, and the construction of enzymatic microreactors
has been described in only a few patents. This suggests that the application of microreactors
in the bio-based process development is still in its initial stage. Hessel et al. (1) argue that the
enzymatic microreactor technology is exactly in the same place where chemical microreactors
were 15 years ago. However, the general opinion is that the efforts focused on the
development, optimization, and application of micro-enzymatic reactors will inaugurate a new
era in bio-based economy (6, 42-44).

When talking about enzymatic microreactors their application can be roughly divided into two
branches – one is referring to biotransformation processes and second on molecule
screenings and kinetic parameter estimations (20). Enzymes, as key elements in
biotransformations can be used in dissolved or immobilized form. Immobilized enzymatic
reactors can be constructed by different approaches but usually covalent immobilization,
adsorption or co-polymerization is applied (45).
In the following section, an overview of some relevant research studies performed by using enzymatic microreactors will be given in order to validate all the above-mentioned advantages of microreactor technology.

The simplest form: one chip – one enzyme

Although the title contains the word “simple”, there is usually nothing simple in transferring processes from batch to the flow mode of operation. The complete approach includes a lot of preliminary research studies like defining residence time, flow regime, inlet concentrations, stream content, choice of best microreactor type, etc. After all the initial conditions have been identified, one can hope that biotransformation will be successful. In this context “simple” mostly refers to the mere application of microreactors in which selected continuous flow reactions are performed on a single commercially manufactured microchip. In order to start the reaction, reactant(s) and catalyst have to be introduced separately, typically by high-pressure syringe pumps, into the reactor and proceeds with a continuous flow forming the reaction mixture through the microchannel (46).

An example of this simple approach is the work of Jurinjak Tušek et al. (47) for which the authors performed enzymatic oxidation of phenolic compounds, catechol and L-DOPA, using commercial laccase from *Trametes versicolor* in a two-aqueous-phase micro-flow microreactor. A catechol conversion rate of 41% and a L-DOPA conversion rate of 45% were obtained for $r=72$ s, respectively. The efficiency of the proposed microreactor system was confirmed by comparing the oxidation rates. In the case of catechol oxidation, the oxidation rates were 18–167 fold higher compared to the same reaction performed in a macroreactor. Kinetic investigations showed that the maximum reaction rate achieved in the micro-flow system was two times higher than the one obtained for the synthesis in a cuvette. As above-mentioned any reduction in microchannel dimensions reduces the diffusion limitations of the enzyme and substrates as well as product transfer, which significantly affects the effective reaction rate (48,49).

Another example is enzymatic oxidation of hexanol to hexanal (a green note fragrance) using NAD$^+$ dependent commercial alcohol dehydrogenase from *S. cerevisiae*. In that research study, biotransformation was performed in four different tubular microreactors (different internal volumes of microreactors with or without presence of micromixers, as well with two different surfaces types - rough channel with a relative channel roughness around 10% and a smooth one with roughness around 1%) (Fig. 2) (23,50,51). The impact of different process parameters on the conversion and the volumetric productivity were studied as a measure of
process efficiency. After result analysis it was observed that in the 6 mm³ tubular microreactor 30% conversion rate of hexanol was achieved after 36 sec meanwhile in a macroreactor 5.3% conversion rate of hexanol was obtained after 180 sec (52) showing a significant process.

Figure 2

For the same reaction system and the same residence time, when challenging smooth and rough microchannel walls, the conversion rate was 2 fold higher in favor of smooth wall microchannel. Namely, the mass transfer occurs at the interface area between the phases (53). When both surface areas were calculated, it was noticed that the microreactor with smooth walls had a larger interface area (around $1.66 \cdot 10^{-5}$ m²) for the same residence time in comparison to a microreactor with rough walls leading to higher conversion rates. Another advantage of a microreactor with smooth walls was a formation of parallel and stable fluid flow from the microchannel inlet to its outlet, which allowed separation of organic and aqueous phases leading to the development of the integrated system.

The kinetic measurement was also performed for the same reaction system (23). The enzyme kinetics was described as a pseudo-homogeneous process with the double substrate Michaelis–Menten rate equation. After measurements were performed it was noticed that the calculated reaction rate was 30-fold higher in the microreactor in comparison to those observed after measurements and estimation in cuvette. For all the other Michaelis–Menten constant no significant difference was noticed (52). No product inhibition was estimated in microreactor kinetic experiments, which was not the case for kinetic measurements performed in a macrosystem. This finding could be explained by hydrodynamic effects and the continuous removal of inhibiting products occurring in microreactors.

Table 1 includes a list of some examples of biotransformation in microreactors by use of free enzymes.

Table 1

Another problem associated with enzymes is their use in a purified form. Purified enzymes are usually expensive due to many steps that are necessary to enforce for their purification. As an alternative, partially purified enzymes and crude cell lysates could be used (64,65). The advantages of crude cell lysates in comparison to isolated enzymes are lower costs, since
extraction and purification of enzymes are avoided. Also, due to their size they are easier to recycle and enzymes are much stable if they are in their natural intracellular environment (66).

When talking about limitations, mass transfer is one of them (67) since molecules (substrate, co-substrate, and product) have to pass through the cell membrane to achieve contact with enzyme. To overcome this obstacle, membrane can be permeabilized by using different organic solvents, mechanical procedures or electroporation (68). Additional limitation refers to specific activity that is lower in comparison to pure enzymes.

To investigate the application of whole cells for biotransformation in a microreactor (Fig. 3A), a study of coenzyme NAD+ regeneration was carried out by acetaldehyde reduction to ethanol using suspended permeabilized bakers’ yeast cells as a source of enzyme alcohol dehydrogenase (ADH) (69). 65.3% conversion rate of NADH was obtained for a residence time of just \(\tau = 36 \) s.

In addition to above-mentioned disadvantages of the whole cells application, resulting from many different enzymes present in the cell, there is another disadvantage: multiple reactions leading to multiple products of which one is usually desired and the others are byproducts. The example is the reaction of hexanol oxidation using whole permeabilized yeast cells in which the target molecule was hexanal but due to many other enzymes present in the cell, hexanoic acid was also produced (70).

Since a free enzyme is used in the most of the foregoing processes the problem how to separate the reaction mixture components (mainly the enzyme and the product) in the final step is one of the key and most important aspects of microreactor technology. There are two reasons for this. Firstly, it makes product purification easier and secondly, a failure to separate the enzyme, which is usually the most expensive component of the reaction mixture, leads to its continuous loss. As above-mentioned, by choosing the right microchannel it is possible to obtain an efficient phase separation since one of the microreactor advantages is formation of the stable, uninterrupted, laminar flow from the microreactor inlet to its outlet. On the contrary, if that is not the case, the microchannel surface can be easily modified (usually by some chemical methods) to have certain desired properties (i.e. to become hydrophobic or hydrophilic). That approach was implemented in the work carried out by Maruyama et al. (71) in which the surface of a glass microchannel was modified by octadecylsilane groups to obtain a hydrophobic surface. This modification allows efficient phase separation at the outlet junction of the microchannel. Phenolic compound (\(\rho \)-chlorophenol) was then successfully degraded using enzyme laccase in a two-phase flow in a glass microreactor and almost 75% of phenolic compound was degraded for the flow velocity of 0.1 cm³/h.
If this approach (utilizing advantages of the microreactor properties) is not suitable, and if the enzyme cannot be recovered and reused after the reaction, then enzyme immobilization is applied as another approach.

One step further: enzyme immobilization

Immobilized enzymes are especially important from commercial production point of view. The use of immobilized enzymes results in reduced operational costs and increased overall enzyme utilization. Besides economic benefits, immobilization is used to enhance enzyme stability, meaning immobilized enzymes usually have better thermal and operational stability at different process conditions. They are commonly longer resistant to denaturation, more stable during storage, and what is especially important, they enable good enzyme and product separation with the possibility of further enzyme reuse (72,73). Nowadays, researchers are focused, not only on enzyme immobilization techniques, but also on the development of different enzyme carriers that could be used in continuous processes aiming to lower the overall production costs (74). Some general requirements for immobilization include stability under fluid flow and reversibility on demand implying that the inactive enzyme can be relatively easily replaced by an active one (75). Immobilization should also provide a high binding capacity resulting in a sufficient amount of enzyme attached onto the surface area that is available internally. For the ideal process system, immobilization should be highly selective, thus allowing the target enzyme to be captured from a complex protein mixture without any protein purification and separation prior to immobilization (75).

Enzyme immobilization techniques are especially important because the immobilization efficiency significantly depends on the immobilization method that is applied. The implemented methods can largely be categorized as adsorption, cross-linking, affinity, covalent immobilization, or entrapment (76,77).

Generally, the most typically applied method is covalent immobilization (surface silanization followed by glutaraldehyde bonding – three step immobilization) on solid support like beads, membrane, microreactor surface etc. The main advantage is formation of a strong enzyme-surface link, which has several advantages like durability and longevity of immobilized enzymes. This is important since it is preventing enzyme detachment and leaching from the microreactor. The second advantage is related to the enzyme structure. Immobilization introduces additional multipoint attachment, which makes the tertiary structure of the enzyme more stable and resistant to refolding (78). On the other hand, formation of additional
attachments can affect on active site deformation leading to lower activity. That is why, prior to immobilization, it is essential to obtain information about protein conformation in order to ensure proper immobilization method (79).

While coupling by glutaraldehyde is common, the method itself is not really exciting and new. In fact, while still used by some, more and more researchers are exploring different approaches. The main idea behind these new methods is to simplify immobilization procedure, meaning to develop the immobilization system that will work in one step (one step immobilization). The process would include parallel enzyme production and selective attachment of desired enzyme (80).

One of proposed immobilization techniques that could be used for this purpose is polycationic binding tag/moduls such as $Z_{\text{basic}2}$. The idea behind this approach is to induce interactions between positively charged tags (like $Z_{\text{basic}2}$) and negatively charged microchannel walls. The enzyme itself is previously fused with modules. Recently, several research groups investigated this approach on a microscale. Miložić et al. (81) fused protein N-SBM-ATA-wt consisting of selected ω-transaminase ATA-wt and the $Z_{\text{basic}2}$ tag in order to demonstrate the usefulness of time scale analysis. The same group, using the same enzyme, made a comparison between different immobilization techniques comparing the covalent immobilization (surface salinization followed by glutaraldehyde bonding – three step immobilization), the use of fused N-SBM-ATA-wt complex (one step method) and covalent E. coli cell overexpressing ATA-wt immobilization. Comparing the results, fused complex gave overall better results, meaning higher enzyme loading and productivity than covalent enzyme immobilization (82). Valikhani et al. (83) managed to obtain two-fold higher enzyme effectiveness by combining enzyme and mentioned module. Bolivar at al. (80) managed to run a continues 16 day process of 2-O-(α-D-Glucopyranosyl)-sn-glycerol (αGG) (a natural osmolyte) production with operational half-life of about 10 days when enzyme sucrose phosphorylase was fused with $Z_{\text{basic}2}$ module.

Another well-established method for one-step protein immobilization is the use of recombinant tags, especially poly-histidine tags (His-tags) (84). The method emerged from immobilized metal affinity chromatography (IMAC) and it has been widely used for protein immobilization (85,86). It became popular because it allows protein immobilization prior protein purification and it is fast, simple and highly specific. Using this approach, Halim et al. (87) managed to synthetize a chiral amino alcohol (diastereoisomer of 2-amino-1,3,4-butanetriol (ABT)) by using two enzymes, transketolase (TK) and transaminase (TAm). They developed a microreactor loaded with Ni-NTA agarose beads that consisted of immobilized His6-tagged TK and TAm and managed to obtain approximately 83% conversion for the residence time of 20
min. Poly(methyl methacrylate) (PMMA) microfluidic devices are especially interesting for forming His-tag enzyme interaction because PMMA surface doesn’t not require prior amination. For immobilization of TM this one-step immobilization method was compared to three step covalent immobilization. It was discovered that, despite the fact that by using the three-step method higher immobilization efficiency was achieved, enzyme specific activity was better preserved by using one-step method (88).

Overall, based on the immobilization method, the enzyme, and the material used, microreactors with immobilized enzyme can be divided into several categories:

1. Enzymes immobilized directly on the microchannel surface usually by a specific covalent immobilization method (Fig. 3B). Biggest disadvantage of this method is poor enzyme loading but there is no additional back-pressure formation (84).

2. Enzyme immobilized on the beads (known as beads activation process) in which beads are packed into the microreactor (i.e. immobilization on magnetic beads; Fig. 4). Biggest advantage is high load and on the other hand, high back-pressure is common disadvantage (89).

3. Enzyme immobilized on the monoliths in which meso- or macroporous monoliths are coated with a resistant layer or directly prepared in a microchannel and functionalized with enzymes. This approach minimizes previously mentioned disadvantages (43).

4. Enzyme immobilized on the membranes in which enzymes are immobilized onto a selective ultrafiltration membrane (46).

Depending on immobilization technique and choice of supporting material, different microreactor types are applied to achieve high enzyme load. Most common are membrane reactors, packed bed reactors (PBR), flow coils, wall coated microreactors, etc. (6,44). PBR reactor is especially interesting when talking about biocatalysis with immobilized enzymes because it allows application on many versatile supports and immobilization techniques leading to many different applications. They can be used for screening (90), gradual scale-up study (91) or different biocatalytic reactions like transesterification (92) of vinyl butyrate and 1-butanol into butyl butyrate, amine synthesis (93) or valuable chemicals synthesis like 2-amino-1,3,4-butanetriol (87).
Among these conventional reactors, microreactors with oscillating magnetic field started drawing attention. As mentioned before, one of the proposed immobilization methods is enzyme immobilization on the beads. Iron oxide magnetic nanoparticles (MNPs) recently gained more attention in enzyme catalysis due to their multifunctional properties, such as biocompatibility, superparamagnetism, small size and low toxicity (94), high specific surface area and the separation is easy simply by the use of a magnet (95,96). Magnetite (Fe₃O₄), maghemite (γ-Fe₂O₃) and hematite (α-Fe₂O₃) are the most commonly used magnetic supports (97). When comparing maghemite and magnetite, some researchers like Kang et al. (98) highlight that those MNPs have a greater binding specificity than magnetite nanoparticles. In addition to above-mentioned MNPs advantages, another advantage is that they can be easily handled in a microsystem.

Figure 4

For that purpose Šalić et al. (99) proposed three different reactor systems in the process of NADH regeneration. Two of them were PTFE tubes equipped with square and cylindrical permanent magnets, and the third was the PTFE tube equipped with electromagnet with an oscillating magnetic field developed to enable magnetic particles movement in a microreactor (Fig. 4). The main difference between them was that the magnetic particles in both microreactor configurations, equipped with square and cylindrical permanent magnets, were placed on just one side of the reactor in several layers and the amount of the enzyme available to substrate was significantly decreased. Using an electromagnet with an oscillating magnetic field it was possible to move actively or restrain the particles across the channel (Fig. 4). In this way the beads cover the whole channel cross-section making the enzyme more available to the substrate.

Table 2 provides a list of some additional examples of biotransformations using the enzyme immobilized in microreactors. Immobilized enzymes together with microfluidic devices have been applied in recent investigations for various reactions such as hydrolysis and esterifications, C-C bond formation reactions, condensations and additions, oxidations and reductions, and polymerization reactions (76). Additional examples of enzyme immobilization in microreactors are extensively reviewed in the literature (10,65,78,84,108-112).

Table 2
Multi-enzyme reactions

If working with one enzyme is not challenging enough, multi-enzyme cascade reactions provide an even greater challenge. To coordinate all optimal reaction conditions, like temperature, pH, concentrations, fluid flow is an art in and of itself. If you combine prevention of inhibition, byproduct formation, parallel side reactions, then the successful implementation of these reactions becomes a little miracle. Gruber et al. (113) underline that a key advantage of multi-enzyme reactions performed in microreactors is the ability to perform *in vitro* biosynthetic reaction. This offers modular approaches to coupling enzyme reactions and may utilize metabolic reaction cascades performed naturally by cells and organs or create *de novo* pathways in order to achieve the production of new molecules. Microreactors provide a new paradigm for performing multi-step biosynthetic reactions, but they are also a good platform for rapid evaluation of the effects of reaction conditions and different enzymes.

GOING BIG – MODULAR SYSTEMS TOWARDS INDUSTRIAL APPLICATION

For many years now microreactor technology was reserved mainly for laboratory research where researchers were collecting information’s. Information’s about how to transfer the process from batch to flow, about process optimization, production, kinetic measurements, separation, discovering new production routs etc. all on the micro scale. Slowly the interest is now shifting on development of robust modular systems that include all production steps from initial substrate introduction in to the process to clean product at the end of the process. Although this process seems simple in theory, in order to achieve these goals some technical obstacles need to be resolved, mainly scaling/numbering up. The first problem is the cost of microreactor chips since many of them, produced from traditional materials like glass, stainless steel, ceramic etc. tend to be expensive. As a solution, application of microchips produced from polymers was proposed (8). The second challenge is to ensure stable flow through the system since pressure drop can cause instabilities. In order to resolve this problem application of larger meso- or mili- reactor was proposed (91). This would also allow higher throughputs leading to production of larger amounts (even tons) of product per year. More about the obstacles can be found in the following section of the paper. Nevertheless, despite all obstacles, at the moment several manufactures like Chemtrix B.V. or Corning offer commercial reactors for scale-up of single and multiphase flow chemistry (8). Unfortunately most of them are traditionally reserved for reaction in chemistry and for production of pharmaceutics. As application of microreactors in biotechnology had a slow start in a laboratory in comparison to chemical reactions, same effect was reflected on development of modular systems. Now, they
are slowly catching up in a race and up to now several processes have been tested (6) like the reaction of the DL-amino acid oxidase (114) or production of different flavor, like isoamyl acetate synthesis (115). Despite all promising results, there are still some bumpy roads ahead and obstacles to overcome before we jump on industrial production.

OBSTACLES TO BE OVERCOME

Biotechnology on a small scale is already present but many of the shown reactions were performed within reactor systems developed primarily for chemical reactions. There are still some obstacles to be overcome when talking about engineering of enzymatic microreactors. In her thesis Denčić (116) suggested several bottlenecks of using a microreactor for biocatalysis and other biotechnological reactions:

Residence time distribution. Short residence time is one of main microreactor characteristics. Therefore fast reactions should be preferably performed in microreactors. In order to bring out their reaction maximum, biocatalyst need to be very active and stable. This usually requires new biocatalysts development. Yet microreactors cannot be used to replace all traditional biotechnology processes performed in macrosystems (12). The solution proposed to this problem is a design of new microreactor systems that will allow longer residence times needed for the desired conversion rates (117).

Catalyst lifetime. In comparison to the chemical catalyst, enzymatic catalysts have short lifetime. Consequently, it is necessary to develop an efficient miniaturized flow system that can enable a long-term use of biocatalyst. One way to go is to utilize microreactor advantages like better process control to enhance stability and activity (20,117) and the other one is to use immobilization techniques that can prolong catalyst stability and lifetime. Additionally, immobilization allows the continuous reuse of enzymes and simplifies biocatalyst recycling and downstream processing (78,118,119).

Cascade catalysis/coupled enzyme-enzyme reactions. While working with multiple enzymes the biggest challenge is to adapt reaction condition so all the enzymes can achieve their maximum potential. As a solution, the compartmentalization of the microreactors in order to tailor each reaction individually is proposed. Second challenge is overcoming the inhibition effect of reactants in the cascade (120) which despite all efforts still continues to remain a great challenge (Fig. 5) (113).

Figure 5
Demanding process change from batch to flow. Up to now, many processes have been well established in a batch reactors and simple shifting them to flow biotechnology doesn't mean that the process will performed better or even be sustainable (121). Therefore, synergy of biotechnology and engineering is necessary to overcome this obstacle meaning that catalyst implementation and behavior have to be seriously considered. Although the focus is usually laid “only” on intensifying the transport phenomena to operate under intrinsic kinetics, there is also a large intensification potential in the specific design of flow processes.

Handling solids formation. When a reaction results in the precipitation of a solid either a product or byproduct or enzyme dispersion, the problems with particles aggregating on the microchannel walls can cause blockages and a catastrophic failure (122-124). The same problem can occur when working with highly viscous solvents. Thus the development of solutions, such as microchannel surface modification and gas/liquid “slug-flow,” are necessary in order to obtain flows with solid precipitates.

Numbering-up. As above-mentioned, numbering-up of microreactors is still a great challenge. Connecting thousands of units to achieve the industrial scale production rates (kg/h or t/h) a complex control and management systems are needed to ensure optimal operating conditions in every single microreactor (111). On the other hand, the conventional scale-up (increasing the microchannel size) is not an option if it gets close to macro-scale since their mass and heat efficiency is questionable. For now, a proposed solution is to work on the mili- (125,126) or meso- (6, 8, 36, 41, 43, 75, 92, 127, 128) scale which ensure good mass and heat efficiency and a satisfying production capacity.

Some other issues are (12) usually connected with high fabrication costs, low throughput, incompatibility with solids and the omission of cost reduction by scale-up effects which lead to still poor industrial acceptance (129). Likewise, the supporting equipment required for the microreactor function can be expensive. The example is low pulse or pulseless pumps needed to ensure stable flow in a microreactor and in most cases they are the most expensive parts of the microreactor set-up. Analytics represents another problem. A very long time period is required to obtain the amount of samples sufficient for a majority of conventional analyses if off-line analytics is used. It all results in many efforts invested to develop of effective and robust on-line analytical techniques for microdevices.

CONCLUSION
In keeping with the developmental stages of chemical microreactors, and having in mind that microreactors in biotechnology are slowly going through the very same stages, in the near future it can be expected that the new microreactor based process design patents will become available. With the development of the novel supports for enzyme immobilization, newly engineered enzymes and microreactor devices many biotransformation processes will benefit from this new approach. One of the key products of the microreactor technology will also be information (127). The information about reaction, products, process, etc. will become more available in order to overcome the obstacles and the challenges in the production. Finally, all of this will lead to a more sustainable, greener and compact production in biotechnology.

REFERENCES
4. Whitesides G. Microfluidics: Where From Here? Harvard University, Available from: http://blog.globalengage.co.uk/microfluidics-george-whitesides-presentation?inf_contact_key=650f2f38e03b1d88ff000441f6b9d995bd7d3b964b73ea9b2bcf701948f280e2&hsCtaTracking=b091b68c-d088-4974-9b1d-e74f158b1663%7Ca41be247-0b07-4fa5-9a9f-0321a6203293
7. European patent office (in English), Available from: https://www.epo.org/searching-for-patents/technical/espacenet.html#tab-1

 https://doi.org/10.1016/j.cej.2010.04.040
 https://doi.org/10.1016/j.biotechadv.2005.06.001
 https://doi.org/10.1016/j.cattod.2007.01.076
 https://doi.org/10.1002/elsc.201100020
 https://doi.org/10.1038/nrd1985
 https://doi.org/10.1021/jo901073v
 https://doi.org/10.1021/op100252m
 https://doi.org/10.1039/c2gc36896j

 https://doi.org/10.1351/pac200274122271

 https://doi.org/10.1002/ceat.200407026

 https://doi.org/10.1002/chem.200800707

 https://doi.org/10.1016/j.tibtech.2006.08.002

 https://doi.org/10.1016/j.tibtech.2015.02.010

 https://doi.org/10.1016/j.tibtech.2017.09.005

 https://doi.org/10.1007/s00216-007-1596-1

 https://doi.org/10.1515/boca-2015-0008

 https://doi.org/10.1007/s12257-012-0688-8

https://doi.org/10.1515/gps-2013-0091

https://doi.org/10.1039/C4RA05421K

https://doi.org/10.1016/j.procbio.2008.09.007

https://doi.org/10.1016/S0017-9310(03)00120-0

https://doi.org/10.1039/b915151f

https://doi.org/10.1016/j.cej.2009.01.025

https://doi.org/10.1016/j.procbio.2009.06.003

https://doi.org/10.1016/j.cej.2010.03.056
https://doi.org/10.1016/j.molcatb.2011.01.007

https://doi.org/10.1016/j.bej.2012.06.015

https://doi.org/10.1016/j.molcatb.2011.12.010

https://doi.org/10.3303/CET1227033

https://doi.org/10.1016/j.enzmictec.2013.03.013.

https://doi.org/10.1016/j.molcatb.2014.02.003

https://doi.org/10.1016/j.cej.2007.07.013

https://doi.org/10.1002/jctb.2564

https://doi.org/10.1007/BF01569762
https://doi.org/10.1007/s00253-006-0811-x

https://doi.org/10.1007/s00449-008-0221-9

https://doi.org/10.1016/j.bej.2013.05.007

https://doi.org/10.1039/b309982b

https://doi.org/10.1016/j.micromeso.2004.08.018

https://doi.org/10.1007/s10404-010-0696-y

https://doi.org/10.1080/10242420500183378

https://doi.org/10.1016/j.tibtech.2011.03.005

https://doi.org/10.3390/molecules16076041

86. Cohen SA, Michaud DP. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate
https://doi.org/10.1006/abio.1993.1270

https://doi.org/10.1016/j.jbiotec.2013.09.001

https://doi.org/10.1016/j.nbt.2017.12.004

https://doi.org/10.1021/op200132y

https://doi.org/10.1016/j.procbio.2001.01.013

https://doi.org/10.1016/j.procbio.2016.09.021

https://doi.org/10.1016/j.cej.2018.05.028

https://doi.org/10.1039/C6GC01780K

https://doi.org/10.2217/17435889.1.2.157

104. Song YS, Shin HY, Lee JY, Park C, Kim SW. β-Galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its
https://doi.org/10.1016/j.foodchem.2012.01.096

https://doi.org/10.1016/j.cej.2013.03.018

https://doi.org/10.1016/j.cej.2013.10.096

https://doi.org/10.1556/1846.2015.00039

https://doi.org/10.1002/biot.200800051

http://dx.doi.org/10.1016/j.chroma.2013.11.045

https://doi.org/10.1556/1846.2015.00028

https://doi.org/10.1016/j.talanta.2017.12.043

https://doi.org/10.1002/biot.201700030

List of figures

Figure 1. Basic structure unit for microreactor system together with microchannels with different inlet shapes

Figure 2. Schematic diagram of the reaction system used for the hexanal biotransformation together with obtained flow profiles

Figure 3. Schematic diagram of the reaction system used for the coenzyme regeneration when a) suspended and b) immobilized yeast cells were used together with proposed diagram for covalent immobilization of cells on the glass microchannel surface

Figure 4. Experimental set-up with system for magnetic field regulation

Figure 5. Illustration of all potential sources of inhibition that can arise in an enzyme cascade (Substrate (S), enzyme (E), product (P), intermediate (I), enzyme-substrate complex (ES), enzyme-intermediate complex (EI) and enzyme-substrate-intermediate complex (ESI))

List of tables

Table 1. Enzymatic biotransformations in microreactors by use of free enzymes

Table 2. Enzymatic biotransformations in microreactors using immobilized enzyme
Figure 4
Figure 5
Table 1

<table>
<thead>
<tr>
<th>biotransformation</th>
<th>system</th>
<th>process description</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>lipase-catalyzed synthesis of isoamyl acetate</td>
<td>ionic liquid-organic solvent</td>
<td>almost three fold better productivity comparing to the intensely mixed batch process</td>
<td>54</td>
</tr>
<tr>
<td>Laccase-catalyzed L-DOPA oxidation</td>
<td>two aqueous phases</td>
<td>87 % conversion reached in residence time under 2 min</td>
<td>55</td>
</tr>
<tr>
<td>esterification of isoamyl alcohol and acetic acid using Candida antartica lipase B</td>
<td>aqueous phase-organic solvent</td>
<td>35 % conversion reached for the residence time of 36.5 s</td>
<td>56</td>
</tr>
<tr>
<td>enzymatic oxidation of cholesterol to 4-cholesten-3-one by cholesterol oxidase</td>
<td>aqueous phase-organic solvent</td>
<td>70 % conversion reached for the residence time less than 1 min</td>
<td>57</td>
</tr>
<tr>
<td>phenolic compound oxidation using horseradish peroxidase</td>
<td>aqueous phase</td>
<td>1.5 fold higher conversion reached using enzyme immobilized in monolayer comparing to conversion reached with enzyme immobilized using physical adsorption processes</td>
<td>58</td>
</tr>
<tr>
<td>hydrolysis of soybean oil catalyzed by Thermomyces lamuginosus lipase</td>
<td>aqueous phase-oil emulsion</td>
<td>25 – 30 % conversion reached for the residence time of 10 min</td>
<td>59</td>
</tr>
<tr>
<td>transketolase-catalysed reaction of hydroxypyruvate and glycolaldehyde to L-erythroluse</td>
<td>two-aqueous phases</td>
<td>100 % conversion reached for the residence time of 60 min</td>
<td>60</td>
</tr>
</tbody>
</table>
alcohol dehydrogenase from *Saccharomyces cerevisiae* catalyzed NADH co-enzyme regeneration

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Conditions</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol dehydrogenase from Saccharomyces cerevisiae catalyzed NADH co-enzyme regeneration</td>
<td>two aqueous phases</td>
<td>95.89 % conversion reached for the residence time of 2 s</td>
<td>61</td>
</tr>
<tr>
<td>aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalysed by two D-fructose-6-phosphate aldolase variants</td>
<td>aqueous -organic solvent</td>
<td>volume productivity more than threefold higher comparing to batch process were achieved in microreactor with micromixers</td>
<td>62</td>
</tr>
<tr>
<td>synthesis of (S)-2-hydroxypropiophenone ((S)-2-HPP) from benzaldehyde and acetaldehyde catalyzed by benzoylformate decarboxylase (BFD) from Pseudomonas putida</td>
<td>aqueous phase-organic solvent</td>
<td>for the studied reaction all microreactors showed 72-fold higher volume productivities</td>
<td>63</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>biotransformation</th>
<th>methods of enzyme immobilization</th>
<th>process description</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD⁺ regeneration in a microreactor using permeabilized baker’s yeast cells</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA method</td>
<td>65.3% conversion of NADH was achieved with suspended permeabilized baker’s yeast cells for a residence time of $\tau = 36$ s and equimolar concentration of substrates. When working with immobilized cells, conversion achieved for the same residence time was 10 fold lower.</td>
<td>69</td>
</tr>
<tr>
<td>hexanal and hexanoic acid production using immobilized ADH from Saccharomyces cerevisiae</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA method</td>
<td>maximal conversion of hexanol that was achieved was 25 % for the residence time of 72 s</td>
<td>70</td>
</tr>
<tr>
<td>L-malic acid production using immobilized fumarase from Saccharomyces cerevisiae</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA method</td>
<td>80 % conversion reached for the residence time of 8 min</td>
<td>73</td>
</tr>
<tr>
<td>β-glucosyglycerol synthesis catalyzed by immobilized β-glycosidase CelB from Pyrococcus furiosus</td>
<td>covalently attached onto coated microchannel walls</td>
<td>approximately 90 % conversion reached for residence time of 10 s</td>
<td>100</td>
</tr>
<tr>
<td>synthesis of butyl laurate from lauric acid and n-butanol using lipase immobilization on the amino activated silica</td>
<td></td>
<td>approximately 99 % yield reached for the</td>
<td>101</td>
</tr>
<tr>
<td>Process Description</td>
<td>Conditions</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Immobilized lipase B from Candida antartica fiber using glutaraldehyde as a</td>
<td>residence time shorter than 38 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bifunctional reagent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triolein transesterification using immobilized lipase from Pseudomonas fluorencens</td>
<td>enzyme entrapped in matrix membrane</td>
<td>approximately 80 % conversion reached for the residence time of 19 min</td>
<td></td>
</tr>
<tr>
<td>L-malic acid production using immobilized Saccharomyces cerevisiae cells</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA</td>
<td>70 % conversion reached for the residence time of 25 min</td>
<td></td>
</tr>
<tr>
<td>continuous synthesis of lactulose catalyzed by immobilized Kluyveromyces lactis</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA</td>
<td>92 % yield reached for the residence time of 45 min</td>
<td></td>
</tr>
<tr>
<td>β-galactosidase</td>
<td>method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized</td>
<td>coupled to pre-activated nanotubes by reaction with a carbodiimide</td>
<td>constant lactulose productivity of 1.29 g L⁻¹ during time period of 48 h</td>
<td></td>
</tr>
<tr>
<td>Candida antartica lipase B</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>laccase-immobilized microreactors were applied for the biotransformation of model</td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA</td>
<td>an immobilization yield of 72 % and enzyme activity of 451 mol dm⁻³</td>
<td></td>
</tr>
<tr>
<td>compounds</td>
<td>method</td>
<td>min⁻¹ was achieved</td>
<td></td>
</tr>
<tr>
<td>NADH regeneration using immobilized formate dehydrogenase</td>
<td>immobilized layer of formate dehydrogenase between two layers of chitosan</td>
<td>immobilized FDH kept half of its enzymatic activity for practically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>two weeks and the polymeric matrix</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immobilized β-glucosidase in a silica quartz capillary tube applied for cellulobiose digestion</td>
<td>allowed transfer of NAD+ with relatively high diffusion coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>covalently bound to the inner surface of a microreactor by the APTES/GA method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maximum conversion rate of soluble substrate cellulobiose digestion in the microreactor was 76% at 50°C and pH 4.8 when the microreactor was operated continuously over 10 h at a flow rate of 7 μL/min.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APTS: (3-Aminopropyl)triethoxysilane; GA: glutaraldehyde